4.利用导数求曲线的切线的步骤是什么?你能区别“在 一点处的切线和“过 一点的切线吗? [自我测试] 查看更多

 

题目列表(包括答案和解析)

已知曲线C:f(x)=x3
(1)利用导数的定义求f(x)的导函数f′(x);
(2)求曲线C上横坐标为1的点处的切线方程.

查看答案和解析>>

已知函数,曲线在点处的切线为,若时,有极值.

(1)求的值;

(2)求上的最大值和最小值.

【解析】(1)根据可建立关于a,b,c的三个方程,解方程组即可.

(2)在(1)的基础上,利用导数列表求极值,最值即可.

 

查看答案和解析>>

设函数处取得极值,且曲线在点处的切线垂直于直线.

(Ⅰ) 求的值;

(Ⅱ)求曲线和直线所围成的封闭图形的面积;

(Ⅲ)设函数,若方程有三个不相等的实根,求的取值范围.

【解析】本试题主要考查了导数的运用。利用导数求解曲边梯形的面积,以及求解函数与方程的根的问题的综合运用。

 

查看答案和解析>>

设函数

(1)当时,求曲线处的切线方程;

(2)当时,求的极大值和极小值;

(3)若函数在区间上是增函数,求实数的取值范围.

【解析】(1)中,先利用,表示出点的斜率值这样可以得到切线方程。(2)中,当,再令,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了在区间导数恒大于等于零,分离参数求解范围的思想。

解:(1)当……2分

   

为所求切线方程。………………4分

(2)当

………………6分

递减,在(3,+)递增

的极大值为…………8分

(3)

①若上单调递增。∴满足要求。…10分

②若

恒成立,

恒成立,即a>0……………11分

时,不合题意。综上所述,实数的取值范围是

 

查看答案和解析>>

已知函数 R).

(Ⅰ)若 ,求曲线  在点  处的的切线方程;

(Ⅱ)若  对任意  恒成立,求实数a的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。

第一问中,利用当时,

因为切点为(), 则,                 

所以在点()处的曲线的切线方程为:

第二问中,由题意得,即可。

Ⅰ)当时,

,                                  

因为切点为(), 则,                  

所以在点()处的曲线的切线方程为:.    ……5分

(Ⅱ)解法一:由题意得,.      ……9分

(注:凡代入特殊值缩小范围的均给4分)

,           

因为,所以恒成立,

上单调递增,                            ……12分

要使恒成立,则,解得.……15分

解法二:                 ……7分

      (1)当时,上恒成立,

上单调递增,

.                  ……10分

(2)当时,令,对称轴

上单调递增,又    

① 当,即时,上恒成立,

所以单调递增,

,不合题意,舍去  

②当时,, 不合题意,舍去 14分

综上所述: 

 

查看答案和解析>>


同步练习册答案