题目列表(包括答案和解析)
已知函数,曲线
在点
处的切线为
,若
时,
有极值.
(1)求的值;
(2)求在
上的最大值和最小值.
【解析】(1)根据可建立关于a,b,c的三个方程,解方程组即可.
(2)在(1)的基础上,利用导数列表求极值,最值即可.
设函数在
处取得极值,且曲线
在点
处的切线垂直于直线
.
(Ⅰ) 求的值;
(Ⅱ)求曲线和直线
所围成的封闭图形的面积;
(Ⅲ)设函数,若方程
有三个不相等的实根,求
的取值范围.
【解析】本试题主要考查了导数的运用。利用导数求解曲边梯形的面积,以及求解函数与方程的根的问题的综合运用。
设函数
(1)当时,求曲线
处的切线方程;
(2)当时,求
的极大值和极小值;
(3)若函数在区间
上是增函数,求实数
的取值范围.
【解析】(1)中,先利用,表示出点
的斜率值
这样可以得到切线方程。(2)中,当
,再令
,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了
在区间
导数恒大于等于零,分离参数求解范围的思想。
解:(1)当……2分
∴
即为所求切线方程。………………4分
(2)当
令………………6分
∴递减,在(3,+
)递增
∴的极大值为
…………8分
(3)
①若上单调递增。∴满足要求。…10分
②若
∵恒成立,
恒成立,即a>0……………11分
时,不合题意。综上所述,实数
的取值范围是
已知函数 R).
(Ⅰ)若 ,求曲线
在点
处的的切线方程;
(Ⅱ)若 对任意
恒成立,求实数a的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。
第一问中,利用当时,
.
因为切点为(
),
则
,
所以在点()处的曲线的切线方程为:
第二问中,由题意得,即
即可。
Ⅰ)当时,
.
,
因为切点为(),
则
,
所以在点()处的曲线的切线方程为:
. ……5分
(Ⅱ)解法一:由题意得,即
. ……9分
(注:凡代入特殊值缩小范围的均给4分)
,
因为,所以
恒成立,
故在
上单调递增,
……12分
要使恒成立,则
,解得
.……15分
解法二:
……7分
(1)当时,
在
上恒成立,
故在
上单调递增,
即
.
……10分
(2)当时,令
,对称轴
,
则在
上单调递增,又
① 当,即
时,
在
上恒成立,
所以在
单调递增,
即
,不合题意,舍去
②当时,
,
不合题意,舍去 14分
综上所述:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com