(2)当当直线AB斜率存在时.设AB的方程为 查看更多

 

题目列表(包括答案和解析)

已知如图,直线l:x=-
p
2
(p>0),点F(
p
2
,0)
,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且
QP
QF
=
FP
FQ

(1)求动点P的轨迹C的方程;
(2)当p=2时,曲线C上存在不同的两点关于直线y=kx+3对称,求实数k满足的条件(写出关系式即可);
(3)设动点M (a,0),过M且斜率为1的直线与轨迹C交于不同的两点A,B,线段AB的中垂线与x轴交于点N,当|AB|≤2p时,求△NAB面积的最大值.

查看答案和解析>>

(2007•崇明县一模)已知如图,直线l:x=-
p
2
(p>0),点F(
p
2
,0)
,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且
QP
QF
=
FP
FQ

(1)求动点P的轨迹C的方程;
(2)当p=2时,曲线C上存在不同的两点关于直线y=kx+3对称,求实数k满足的条件(写出关系式即可);
(3)设动点M (a,0),过M且斜率为1的直线与轨迹C交于不同的两点A,B,线段AB的中垂线与x轴交于点N,当|AB|≤2p时,求△NAB面积的最大值.

查看答案和解析>>

如图,在平面直角坐标系xoy中,设点F(0,p)(p>0),直线l:y=-p,点p在直线l上移动,R是线段PF与x轴的交点,过R、P分别作直线l1、l2,使l1⊥PF,l2⊥l l1∩l2=Q.
(Ⅰ)求动点Q的轨迹C的方程;
(Ⅱ)在直线l上任取一点M做曲线C的两条切线,设切点为A、B,求证:直线AB恒过一定点;
(Ⅲ)对(Ⅱ)求证:当直线MA,MF,MB的斜率存在时,直线MA,MF,MB的斜率的倒数成等差数列.

查看答案和解析>>

如图,在平面直角坐标系xoy中,设点F(0,p)(p>0),直线l:y=-p,点P在直线l上移动,R是线段PF与x轴的交点, 过R、P分别作直线l1、l2,使l1⊥PF,l2⊥l
(Ⅰ)求动点Q的轨迹C的方程;
(Ⅱ)在直线l上任取一点M做曲线C的两条切线,设切点为A、B,求证:直线AB恒过一定点;
(Ⅲ)对(Ⅱ)求证:当直线MA,MF,MB的斜率存在时,直线MA,MF,MB的斜率的倒数成等差数列.

查看答案和解析>>

如图,在平面直角坐标系xoy中,设点F(0,p)(p>0),直线l:y=-p,点p在直线l上移动,R是线段PF与x轴的交点,过R、P分别作直线l1、l2,使l1⊥PF,l2⊥l l1∩l2=Q.
(Ⅰ)求动点Q的轨迹C的方程;
(Ⅱ)在直线l上任取一点M做曲线C的两条切线,设切点为A、B,求证:直线AB恒过一定点;
(Ⅲ)对(Ⅱ)求证:当直线MA,MF,MB的斜率存在时,直线MA,MF,MB的斜率的倒数成等差数列.

查看答案和解析>>


同步练习册答案