解: 分析:由 由 所以为等边三角形 查看更多

 

题目列表(包括答案和解析)

如图,,…,,…是曲线上的点,,…,,…是轴正半轴上的点,且,…,,… 均为斜边在轴上的等腰直角三角形(为坐标原点).

(1)写出之间的等量关系,以及之间的等量关系;

(2)求证:);

(3)设,对所有恒成立,求实数的取值范围.

【解析】第一问利用有得到

第二问证明:①当时,可求得,命题成立;②假设当时,命题成立,即有则当时,由归纳假设及

第三问 

.………………………2分

因为函数在区间上单调递增,所以当时,最大为,即

解:(1)依题意,有,………………4分

(2)证明:①当时,可求得,命题成立; ……………2分

②假设当时,命题成立,即有,……………………1分

则当时,由归纳假设及

解得不合题意,舍去)

即当时,命题成立.  …………………………………………4分

综上所述,对所有.    ……………………………1分

(3) 

.………………………2分

因为函数在区间上单调递增,所以当时,最大为,即

.……………2分

由题意,有. 所以,

 

查看答案和解析>>

已知△ABC的三个内角A、B、C所对的边分别为a、b、c,向量

(Ⅰ)求角A的大小;

(Ⅱ)若,试判断b·c取得最大值时△ABC形状.

【解析】本试题主要考查了解三角形的运用。第一问中利用向量的数量积公式,且由

(2)问中利用余弦定理,以及,可知,并为等边三角形。

解:(Ⅰ)

     ………………………………6分

(Ⅱ)

………………………………8分

……………10分

 

查看答案和解析>>


同步练习册答案