题目列表(包括答案和解析)
(本题满分12分)
如图,已知四棱锥P—ABCD,底面ABCD为菱形,PA平面ABCD,ABC=60O,E,F分别是BC,PC
的中点。H为PD上的动点,EH与平面PAD所成最大角的正切值为。
(1) 证明:AEPD;
(2) 求异面直线PB与AC所成的角的余弦值;
(3) 若AB=2,求三棱锥P—AEF的体积。
(本小题满分12分)
如图,已知四棱锥P—ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,,
(I)证明:;
(II)若PB =3,求直线AB与平面PBC所成角的正弦值.
(本小题满分12分)
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC, △PAD是等边三角形,已知BD=2AD=8,AB=2DC=(1)设M是PC上的一点,证明:平面MBD⊥平面PAD(2)求四棱锥P-ABCD的体积
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com