6.平面 (1)对平面的理解 平面是一个不加定义.只须理解的最基本的原始概念. 立体几何中的平面是理想的.绝对平且无限延展的模型.平面是无大小.厚薄之分的.类似于我们以前学的直线.它可以无限延伸.它是不可度量的. (2)对公理的剖析 (1)公理1的内容反映了直线与平面的位置关系.公理1的条件“线上不重合的两点在平面内 是公理的必要条件.结论是“线上所有点都在面内 .这个结论阐述了两个观点:一是整条直线在平面内,二是直线上所有点在平面内. 其作用是:可判定直线是否在平面内.点是否在平面内. (2)公理2中的“有且只有一个 的含义要准确理解.这里的“有 是说图形存在.“只有一个 是说图形唯一.确定一个平面中的“确定 是“有且只有 的同义词.也是指存在性和唯一性这两方面.这个术语今后也会常常出现.要理解好. 其作用是:一是确定平面,二是证明点.线共面. (3)公理3的内容反映了平面与平面的位置关系,它的条件简而言之是“两面共一点 .结论是“两面共一线.且过这一点.线唯一 .对于本公理应强调对于不重合的两个平面.只要它们有公共点.它们就是相交的位置关系.交集是一条直线. 其作用是:其一它是判定两个平面是否相交的依据.只要两个平面有一个公共点.就可以判定这两个平面必相交于过这点的一条直线,其二它可以判定点在直线上.点是两个平面的公共点.线是这两个平面的公共交线.则这点在交线上. 查看更多

 

题目列表(包括答案和解析)

某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练对提高‘数学应用题’得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:
60分以下 61-70分 71-80分 81-90分 91-100分
甲班(人数) 3 6 11 18 12
乙班(人数) 4 8 13 15 10
现规定平均成绩在80分以上(不含80分)的为优秀.
(Ⅰ)试分别估计两个班级的优秀率;
(Ⅱ)由以上统计数据填写下面2×2列联表,并问是否有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.
优秀人数 非优秀人数 合计
甲班
乙班
合计

查看答案和解析>>

某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练对提高‘数学应用题’得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:
60分以下61-70分71-80分81-90分91-100分
甲班(人数)36111812
乙班(人数)48131510
现规定平均成绩在80分以上(不含80分)的为优秀.
(Ⅰ)试分别估计两个班级的优秀率;
(Ⅱ)由以上统计数据填写下面2×2列联表,并问是否有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.
优秀人数非优秀人数合计
甲班
乙班
合计

查看答案和解析>>

某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练对提高‘数学应用题’得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:
60分以下 61-70分 71-80分 81-90分 91-100分
甲班(人数) 3 6 11 18 12
乙班(人数) 4 8 13 15 10
现规定平均成绩在80分以上(不含80分)的为优秀.
(Ⅰ)试分别估计两个班级的优秀率;
(Ⅱ)由以上统计数据填写下面2×2列联表,并问是否有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.
优秀人数 非优秀人数 合计
甲班
乙班
合计

查看答案和解析>>

某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解,训练对提髙‘数学应用题得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:

60分以下

61—70 分

71—80 分

81-90 分

91-100分

甲班(人数)

3

6

11

18

12

乙班(人数)

8

13

15

10

现规定平均成绩在80分以上(不含80分)的为优秀.
(I )试分别估计两个班级的优秀率;

(II)由以上统计数据填写下面2 X 2列联表,并问是否有"5匁的把握认为“加强‘语文阅读理解’训练对提商‘数学应用题’得分率”有帮助.

优秀人数

非优秀人数

合计

甲班

乙班

合计

参考公式及数据:

0.50

0.40

0.25

0.15

0.10

0. 05

0.025

0.010

0.005

0.001

K0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.82

查看答案和解析>>

某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练对提高‘数学应用题’得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:
60分以下61-70分71-80分81-90分91-100分
甲班(人数)36111812
乙班(人数)48131510
现规定平均成绩在80分以上(不含80分)的为优秀.
(Ⅰ)试分别估计两个班级的优秀率;
(Ⅱ)由以上统计数据填写下面2×2列联表,并问是否有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.
优秀人数非优秀人数合计
甲班
乙班
合计

查看答案和解析>>


同步练习册答案