3.以抛物线的焦点为圆心且经过坐标原点的圆的方程为 . 查看更多

 

题目列表(包括答案和解析)

已知椭圆的中心在坐标原点,椭圆的右焦点F2与抛物线y2=4x的焦点重合,且椭圆经过点P(1,
32
).
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)求以这个椭圆的焦点为顶点、顶点为焦点的双曲线的标准方程.

查看答案和解析>>

已知椭圆的中心在坐标原点,椭圆的右焦点F2与抛物线y2=4x的焦点重合,且椭圆经过点P(1,
3
2
).
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)求以这个椭圆的焦点为顶点、顶点为焦点的双曲线的标准方程.

查看答案和解析>>

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

如图,抛物线的顶点在坐标原点,且开口向右,点ABC在抛物线上,△ABC的重心F为抛物线的焦点,直线AB的方程为

(Ⅰ)求抛物线的方程;

(Ⅱ)设点M为某定点,过点M的动直线l与抛物线相交于PQ两点,试推断是否存在定点M,使得以线段PQ为直径的圆经过坐标原点?若存在,求点M的坐标;若不存在,说明理由。

查看答案和解析>>

如图,抛物线的顶点在坐标原点,且开口向右,点ABC在抛物线上,△ABC的重心F为抛物线的焦点,直线AB的方程为
(Ⅰ)求抛物线的方程;
(Ⅱ)设点M为某定点,过点M的动直线l与抛物线相交于PQ两点,试推断是否存在定点M,使得以线段PQ为直径的圆经过坐标原点?若存在,求点M的坐标;若不存在,说明理由。

查看答案和解析>>


同步练习册答案