题目列表(包括答案和解析)
利用两角和与差的正弦、余弦公式证明:
; ; ; .如图所示的长方体中,底面是边长为的正方形,为与的交点,,是线段的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求二面角的大小.
【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用,又平面,平面,∴平面由,,又,∴平面. 可得证明
(3)因为∴为面的法向量.∵,,
∴为平面的法向量.∴利用法向量的夹角公式,,
∴与的夹角为,即二面角的大小为.
方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接,则点、,
∴,又点,,∴
∴,且与不共线,∴.
又平面,平面,∴平面.…………………4分
(Ⅱ)∵,
∴,,即,,
又,∴平面. ………8分
(Ⅲ)∵,,∴平面,
∴为面的法向量.∵,,
∴为平面的法向量.∴,
∴与的夹角为,即二面角的大小为
q | 1-p |
某公司全年的利润为b元,其中一部分作为奖金发给n位职工,奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n排序,第1位职工得奖金元,然后再将余额除以n发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金.
(1)设ak(1≤k≤n)为第k位职工所得奖金金额,试求a2、a3,并用k、n和b表示ak(不必证明);
(2)证明ak>ak+1(k=1,2,…,n-1),并解释此不等式关于分配原则的实际意义;
(3)发展基金与n和b有关,记为Pn(b),对常数b,当n变化时,求Pn(b).
某公司全年的纯利润为b元,其中一部分作为奖金发给n位职工.奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小.由1至n排序,第1位职工得奖金元,然后再将余额除以n发给第2位职工,按此方法将奖金逐一发给每位职工.并将最后剩余部分作为公司发展基金.
(Ⅰ)设ak(1≤k≤n)为第k位职工所得奖金额,试求a2、a3,并用k、n和b表示ak;(不必证明)
(Ⅱ)证明ak>ak+1(k=1,2,…,n-1),并解释此不等式关于分配原则的实际意义;
(Ⅲ)发展基金与n和b有关,记为Pn(b).对常数b,当n变化时,求Pn(b).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com