1.利用公式.证明: (1),(2), (3),(4). 查看更多

 

题目列表(包括答案和解析)

利用两角和与差的正弦、余弦公式证明:

查看答案和解析>>

如图所示的长方体中,底面是边长为的正方形,的交点,是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求二面角的大小.

【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用,又平面平面,∴平面,又,∴平面. 可得证明

(3)因为∴为面的法向量.∵

为平面的法向量.∴利用法向量的夹角公式,

的夹角为,即二面角的大小为

方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接,则点

,又点,∴

,且不共线,∴

平面平面,∴平面.…………………4分

(Ⅱ)∵

,即

,∴平面.   ………8分

(Ⅲ)∵,∴平面

为面的法向量.∵

为平面的法向量.∴

的夹角为,即二面角的大小为

 

查看答案和解析>>

阅读下面给出的定义与定理:
①定义:对于给定数列{xn},如果存在实常数p、q,使得xn+1=pxn+q 对于任意n∈N+都成立,我们称数列{xn}是“线性数列”.
②定理:“若线性数列{xn}满足关系xn+1=pxn+q,其中p、q为常数,且p≠1,p≠0,则数列{xn-
q1-p
}
是以p为公比的等比数列.”
(Ⅰ)如果an=2n,bn=3•2n,n∈N+,利用定义判断数列{an}、{bn}是否为“线性数列”?若是,分别指出它们对应的实常数p、q;若不是,请说明理由;
(Ⅱ)如果数列{cn}的前n项和为Sn,且对于任意的n∈N*,都有Sn=2cn-3n,
①利用定义证明:数列{cn}为“线性数列”;
②应用定理,求数列{cn}的通项公式;
③求数列{cn}的前n项和Sn

查看答案和解析>>

某公司全年的利润为b元,其中一部分作为奖金发给n位职工,奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n排序,第1位职工得奖金元,然后再将余额除以n发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金.

(1)设ak(1≤k≤n)为第k位职工所得奖金金额,试求a2、a3,并用k、n和b表示ak(不必证明);

(2)证明ak>ak+1(k=1,2,…,n-1),并解释此不等式关于分配原则的实际意义;

(3)发展基金与n和b有关,记为Pn(b),对常数b,当n变化时,求Pn(b).

查看答案和解析>>

某公司全年的纯利润为b元,其中一部分作为奖金发给n位职工.奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小.1n排序,第1位职工得奖金元,然后再将余额除以n发给第2位职工,按此方法将奖金逐一发给每位职工.并将最后剩余部分作为公司发展基金.

)设ak1≤kn)为第k位职工所得奖金额,试求a2a3,并用knb表示ak;(不必证明)

)证明akak1k=12n1),并解释此不等式关于分配原则的实际意义;

)发展基金与nb有关,记为Pnb).对常数b,当n变化时,求Pnb).

 

查看答案和解析>>


同步练习册答案