题目列表(包括答案和解析)
如图,长方体中,底面是正方形,是的中点,是棱上任意一点。
(Ⅰ)证明: ;
(Ⅱ)如果=2 ,=,, 求 的长。
【解析】(Ⅰ)因底面是正方形,故,又侧棱垂直底面,可得,而,所以面,因,所以面,又面,所以 ;
(Ⅱ)因=2 ,=,,可得,,设,由得,即,解得,即 的长为。
已知m>1,直线,椭圆C:,、分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[
【解析】第一问中因为直线经过点(,0),所以=,得.又因为m>1,所以,故直线的方程为
第二问中设,由,消去x,得,
则由,知<8,且有
由题意知O为的中点.由可知从而,设M是GH的中点,则M().
由题意可知,2|MO|<|GH|,得到范围
某厂为适应市场需求,提高效益,特投入98万元引进先进设备,并马上投入生产,第一年需要的各种费用是12万元,从第二年开始,所需费用会比上一年增加4万元,而每年因引入该设备可获得的年利润为50万元。请你根据以上数据,解决下列问题:(1)引进该设备多少年后,开始盈利?(2)引进该设备若干年后,有两种处理方案:第一种:年平均盈利达到最大值时,以26万元的价格卖出;第二种:盈利总额达到最大值时,以8万元的价格卖出,哪种方案较为合算?请说明理由.
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)证明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.
【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)证明:易得,于是,所以
(2) ,设平面PCD的法向量,
则,即.不防设,可得.可取平面PAC的法向量于是从而.
所以二面角A-PC-D的正弦值为.
(3)设点E的坐标为(0,0,h),其中,由此得.
由,故
所以,,解得,即.
解法二:(1)证明:由,可得,又由,,故.又,所以.
(2)如图,作于点H,连接DH.由,,可得.
因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,
因此所以二面角的正弦值为.
(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,故
在中,由,,
可得.由余弦定理,,
所以.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com