题目列表(包括答案和解析)
已知中心在原点,焦点在轴上的椭圆
的离心率为
,且经过点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存过点(2,1)的直线
与椭圆
相交于不同的两点
,满足
?若存在,求出直线
的方程;若不存在,请说明理由.
【解析】第一问利用设椭圆的方程为
,由题意得
解得
第二问若存在直线满足条件的方程为
,代入椭圆
的方程得
.
因为直线与椭圆
相交于不同的两点
,设
两点的坐标分别为
,
所以
所以.解得。
解:⑴设椭圆的方程为
,由题意得
解得,故椭圆
的方程为
.……………………4分
⑵若存在直线满足条件的方程为
,代入椭圆
的方程得
.
因为直线与椭圆
相交于不同的两点
,设
两点的坐标分别为
,
所以
所以.
又,
因为,即
,
所以.
即.
所以,解得
.
因为A,B为不同的两点,所以k=1/2.
于是存在直线L1满足条件,其方程为y=1/2x
已知幂函数满足
。
(1)求实数k的值,并写出相应的函数的解析式;
(2)对于(1)中的函数,试判断是否存在正数m,使函数
,在区间上的最大值为5。若存在,求出m的值;若不存在,请说明理由。
【解析】本试题主要考查了函数的解析式的求解和函数的最值的运用。第一问中利用,幂函数满足
,得到
因为,所以k=0,或k=1,故解析式为
(2)由(1)知,,
,因此抛物线开口向下,对称轴方程为:
,结合二次函数的对称轴,和开口求解最大值为5.,得到
(1)对于幂函数满足
,
因此,解得
,………………3分
因为,所以k=0,或k=1,当k=0时,
,
当k=1时,,综上所述,k的值为0或1,
。………………6分
(2)函数,………………7分
由此要求,因此抛物线开口向下,对称轴方程为:
,
当时,
,因为在区间
上的最大值为5,
所以,或
…………………………………………10分
解得满足题意
已知函数f(x)=sin(ωx+φ)
(0<φ<π,ω>0)过点
,函数y=f(x)图象的两相邻对称轴间的距离为
.
(1) 求f(x)的解析式;
(2) f(x)的图象向右平移个单位后,得到函数y=g(x)的图象,求函数g(x)的单调递减区间.
【解析】本试题主要考查了三角函数的图像和性质的运用,第一问中利用函数y=f(x)图象的两相邻对称轴间的距离为.得
,
所以
第二问中,,
可以得到单调区间。
解:(Ⅰ)由题意得,
,…………………1分
代入点
,得
…………1分
,
∴
(Ⅱ),
的单调递减区间为
,
.
已知函数.(
)
(1)若在区间
上单调递增,求实数
的取值范围;
(2)若在区间上,函数
的图象恒在曲线
下方,求
的取值范围.
【解析】第一问中,首先利用在区间
上单调递增,则
在区间
上恒成立,然后分离参数法得到
,进而得到范围;第二问中,在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.然后求解得到。
解:(1)在区间
上单调递增,
则在区间
上恒成立. …………3分
即,而当
时,
,故
.
…………5分
所以.
…………6分
(2)令,定义域为
.
在区间上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.
∵ …………9分
① 若,令
,得极值点
,
,
当,即
时,在(
,+∞)上有
,此时
在区间
上是增函数,并且在该区间上有
,不合题意;
当,即
时,同理可知,
在区间
上递增,
有,也不合题意;
…………11分
② 若,则有
,此时在区间
上恒有
,从而
在区间
上是减函数;
要使在此区间上恒成立,只须满足
,
由此求得的范围是
. …………13分
综合①②可知,当时,函数
的图象恒在直线
下方.
已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.
(1)求f(x)的解析式;
(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依题意
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)设切点为(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)
又切线过点A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
则g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.
∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2
画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,
所以m的取值范围是(-6,2).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com