解:(Ⅰ)设G是曲线C上任一点.依题意. ---- 1分 ∴曲线C是以E.F为焦点的椭圆.且椭圆的长半轴a=6.半焦距c=4. ∴短半轴b=. ---------------------- 3分 ∴所求的椭圆方程为,--------------------- 4分 (Ⅱ)由已知,.设点P的坐标为.则 由已知得 -------- 6分 则.解之得.---------------- 7分 由于.所以只能取.于是. 所以点P的坐标为,---------------------- 8分 .半径为6.其方程为.------- 9分 若过P的直线l与x轴垂直.则直线l的方程为.这时.圆心到l的距离. ∴.符合题意,-------- 10分 若过P的直线l不与x轴垂直.设其斜率为k.则直线l的方程为. 即.这时.圆心到l的距离 ∴.----------- 12分 化简得..∴. ∴直线l的方程为. ------------ 13分 综上.所求的直线l的方程为或 ------ 14分 查看更多

 

题目列表(包括答案和解析)

已知h(x)是指数函数,且过点(ln2,2),令f(x)=h(x)+ax.
(I)求f(x)的单调区间;
(II)记不等式h(x)<(1-a)x的解集为P,若M={x|
12
≤x≤2}
且M∪P=P,求实数a的取值范围;
(III)当a=-1时,设g(x)=h(x)lnx,问是否存在x0∈(0,+∞),使曲线C:y=g(x)-f(x)在点x0处的切线斜率与f(x)在R上的最小值相等?若存在,求出符合条件的x0的个数;若不存在,请说明理由.

查看答案和解析>>

已知h(x)是指数函数,且过点(ln2,2),令f(x)=h(x)+ax.
(I)求f(x)的单调区间;
(II)记不等式h(x)<(1-a)x的解集为P,若数学公式且M∪P=P,求实数a的取值范围;
(III)当a=-1时,设g(x)=h(x)lnx,问是否存在x0∈(0,+∞),使曲线C:y=g(x)-f(x)在点x0处的切线斜率与f(x)在R上的最小值相等?若存在,求出符合条件的x0的个数;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>

已知曲线C:(m∈R)

(1)   若曲线C是焦点在x轴点上的椭圆,求m的取值范围;

(2)     设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。

【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当解得,所以m的取值范围是

(2)当m=4时,曲线C的方程为,点A,B的坐标分别为

,得

因为直线与曲线C交于不同的两点,所以

设点M,N的坐标分别为,则

直线BM的方程为,点G的坐标为

因为直线AN和直线AG的斜率分别为

所以

,故A,G,N三点共线。

 

查看答案和解析>>

已知函数f(x)=x2,g(x)=|x-2|.

(1)解不等式f(x)>g(x);

(2)设函数f(x)的图象为C1,g(x)的图象为C2,l是和曲线C1相切且与曲线C2无公共点的直线,求直线l的斜率的取值范围.

查看答案和解析>>


同步练习册答案