直线与圆锥曲线的位置关系联立方程组是经常采用的手段.如例2以为直径的圆过原点就是.而.将韦达定理代入可求. 查看更多

 

题目列表(包括答案和解析)

已知抛物线,过M(a,0)且斜率为1的直线与抛物线交于不同的两点A、B,

    (1)求a的取值范围;

    (2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。

    分析:这是一道直线与圆锥曲线位置关系的问题,对于(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围。对于(2)首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值。

查看答案和解析>>

设点为平面直角坐标系中的一个动点(其中O为坐标原点),点P到定点的距离比点P到轴的距离大

(1)求点P的轨迹方程。

(2)若直线与点P的轨迹相交于A、B两点,且,求的值。

(3)设点P的轨迹是曲线C,点是曲线C上的一点,求以Q为切点的曲线C 的切线方程。

【解析】本试题主要考查了轨迹方程的求解,利用直接法设点表示轨迹方程,并能利用所求的轨迹进行直线与圆锥曲线位置关系的运用。以及导数的几何意义的运用的综合试题。

 

查看答案和解析>>

设点为平面直角坐标系中的一个动点(其中O为坐标原点),点P到定点的距离比点P到轴的距离大

(1)求点P的轨迹方程。

(2)若直线与点P的轨迹相交于A、B两点,且,求的值。

(3)设点P的轨迹是曲线C,点是曲线C上的一点,求以Q为切点的曲线C 的切线方程。

【解析】本试题主要考查了轨迹方程的求解,利用直接法设点表示轨迹方程,并能利用所求的轨迹进行直线与圆锥曲线位置关系的运用。以及导数的几何意义的运用的综合试题。

 

查看答案和解析>>

精英家教网圆锥曲线上任意两点连成的线段称为弦.若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦.已知点P(x0,y0)、M(m,n)是圆锥曲线C上不与顶点重合的任意两点,MN是垂直于x轴的一条垂轴弦,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0).
(1)试用x0,y0,m,n的代数式分别表示xE和xF
(2)若C的方程为
x2
a2
+
y2
b2
=1(a>b>0)
(如图),求证:xE•xF是与MN和点P位置无关的定值;
(3)请选定一条除椭圆外的圆锥曲线C,试探究xE和xF经过某种四则运算(加、减、乘、除),其结果是否是与MN和点P位置无关的定值,写出你的研究结论并证明.

查看答案和解析>>

圆锥曲线上任意两点连成的线段称为弦.若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦.已知点P(
x0,y0)、M(m,n)是圆锥曲线C上不与顶点重合的任意两点,MN是垂直于x轴的一条垂轴弦,直线MP,NP分别交x轴于点E(xE,0)和点F(xF,0).
(Ⅰ)试用x0,y0,m,n的代数式分别表示xE和xF
(Ⅱ)已知“若点P(x0,y0)是圆C:x2+y2=R2上的任意一点(
x0•y0≠0),MN是垂直于x轴的垂轴弦,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0),则xExF=R2”.类比这一结论,我们猜想:“若曲线C的方程为
x2
a2
+
y2
b2
=1(a>b>0)
(如图),则xE•xF也是与点M、N、P位置无关的定值”,请你对该猜想给出证明.

查看答案和解析>>


同步练习册答案