由在区间上为增.且图象过点.则在只有当时才满足.由偶函数的对称性可得在只有当时才满足.由函数图像的平移可得当时有. 查看更多

 

题目列表(包括答案和解析)

有以下五个命题
①设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为[0,
π
4
],则点P到曲线y=f(x)对称轴距离的取值范围为[0,
1
2a
];
②一质点沿直线运动,如果由始点起经过t称后的位移为s=
1
3
t3-
3
2
t2+2t
,那么速度为零的时刻只有1秒末;
③若函数f(x)=loga(x3-ax)(a>0,且a≠1)在区间(-
1
2
,0)
内单调递增,则a的取值范围是[
3
4
,1)

④定义在R上的偶函数f(x),满足f(x+1)=-f(x),则f(x)的图象关于x=1对称;
⑤函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称.其中正确的有
 

查看答案和解析>>

有以下五个命题
①设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x,f(x))处切线的倾斜角的取值范围为[0,],则点P到曲线y=f(x)对称轴距离的取值范围为[0,];
②一质点沿直线运动,如果由始点起经过t称后的位移为,那么速度为零的时刻只有1秒末;
③若函数f(x)=loga(x3-ax)(a>0,且a≠1)在区间内单调递增,则a的取值范围是
④定义在R上的偶函数f(x),满足f(x+1)=-f(x),则f(x)的图象关于x=1对称;
⑤函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称.其中正确的有   

查看答案和解析>>

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>


同步练习册答案