1.直线与方程 (1)在平面直角坐标系中.结合具体图形.掌握确定直线位置的几何要素. (2)理解直线的倾斜角和斜率的概念.掌握过两点的直线斜率的计算公式. (3)能根据两条直线的斜率判定这两条直线平行或垂直. (4)掌握确定直线位置关系的几何要素.掌握直线方程的几种形式(点斜式.两点式及一般式).了解斜截式与一次函数的关系. (5)能用解方程组的方法求两相交直线的交点坐标. (6)掌握两点间的距离公式.点到直线的距离公式.会求两平行直线间的距离. 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,O为坐标原点,已知两点M (1,-3)、N(5,1),若点C满足
OC
=t
OM
+(1-t)
ON
(t∈R),点C的轨迹与抛物线:y2=4x交于A、B两点.
(1)求证:
OA
OB

(2)在x轴上是否存在一点P (m,0),使得过点P任作抛物线的一条弦,并以该弦为直径的圆都过原点.若存在,请求出m的值及圆心的轨迹方程;若不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系中,已知A1(-
2
,0),A2(
2
,0),P(x,y),M(x,1),N(x,-2)
,若实数λ使得λ2
OM
ON
=
A1P
A2P
(O为坐标原点)
(1)求P点的轨迹方程,并讨论P点的轨迹类型;
(2)当λ=
2
2
时,若过点B(0,2)的直线l与(1)中P点的轨迹交于不同的两点E,F(E在B,F之间),试求△OBE与OBF面积之比的取值范围.

查看答案和解析>>

在平面直角坐标系中,已知点A ( 
1
2
 , 0 )
,点B在直线l:x=-
1
2
上运动,过点B与l垂直的直线和AB的中垂线相交于点M.
(Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)设点P是轨迹E上的动点,点R,N在y轴上,圆C:(x-1)2+y2=1内切于△PRN,求△PRN的面积的最小值.

查看答案和解析>>

在平面直角坐标系中,已知三点A(-2,0)、B(2,0)C(1,
3
)
,△ABC的外接圆为圆,椭圆
x2
4
+
y2
2
=1
的右焦点为F.
(1)求圆M的方程;
(2)若点P为圆M上异于A、B的任意一点,过原点O作PF的垂线交直线x=2
2
于点Q,试判断直线PQ与圆M的位置关系,并给出证明.

查看答案和解析>>

在平面直角坐标系中,△ABC的两个顶点A、B的坐标分别是(-1,0),(1,0),点G是△ABC的重心,y轴上一点M满足GM∥AB,且|MC|=|MB|.
(I)求△ABC的顶点C的轨迹E的方程;
(II)不过点A的直线l:y=kx+b与轨迹E交于不同的两点P、Q,当
AP
AQ
=0时,求k与b的关系,并证明直线l过定点.

查看答案和解析>>


同步练习册答案