题目列表(包括答案和解析)
如图,分别是椭圆
:
+
=1(
)的左、右焦点,
是椭圆
的顶点,
是直线
与椭圆
的另一个交点,
=60°.
(Ⅰ)求椭圆的离心率;
(Ⅱ)已知△的面积为40
,求
的值.
【解析】 (Ⅰ)由题=60°,则
,即椭圆
的离心率为
。
(Ⅱ)因△的面积为40
,设
,又面积公式
,又直线
,
又由(Ⅰ)知,联立方程可得
,整理得
,解得
,
,所以
,解得
。
已知数列是首项为
的等比数列,且满足
.
(1) 求常数的值和数列
的通项公式;
(2) 若抽去数列中的第一项、第四项、第七项、……、第
项、……,余下的项按原来的顺序组成一个新的数列
,试写出数列
的通项公式;
(3) 在(2)的条件下,设数列的前
项和为
.是否存在正整数
,使得
?若存在,试求所有满足条件的正整数
的值;若不存在,请说明理由.
【解析】第一问中解:由得
,,
又因为存在常数p使得数列为等比数列,
则即
,所以p=1
故数列为首项是2,公比为2的等比数列,即
.
此时也满足,则所求常数
的值为1且
第二问中,解:由等比数列的性质得:
(i)当时,
;
(ii) 当时,
,
所以
第三问假设存在正整数n满足条件,则,
则(i)当时,
,
电视剧《华罗庚》中有一个镜头:华罗庚少年时代用心算法解出了“孙子算经”中的难题,原文是:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?学曰:二十三.”即一个正整数,被3,5,7除,余数分别为2,3,2.“孙子算经”解法的口诀是:“三人同行七十稀,五树梅花二十一,其子团圆正月丰,除百零五便得知.”
这个算法又叫“韩信点兵”.相传韩信才略过人,领兵打仗时,为了对敌方保密,从不点自己军队的人数,只是让他的士兵以三人一排很快地从他面前过去,再以五人一排走一次,最后以七人一排走过去,由于队伍走得很快,别人根本来不及数有多少人.然而韩信只对各队士兵的最后一排掠一眼,就知道总数了,他利用的就是上面的这个口诀,你能理解这个口诀吗?
求解“孙子问题”的算法有很多,你能想出什么样的算法?
这个算法又叫“韩信点兵”.相传韩信才略过人,领兵打仗时,为了对敌方保密,从不点自己军队的人数,只是让他的士兵以三人一排很快地从他面前过去,再以五人一排走一次,最后以七人一排走过去,由于队伍走得很快,别人根本来不及数有多少人.然而韩信只对各队士兵的最后一排掠一眼,就知道总数了,他利用的就是上面的这个口诀,你能理解这个口诀吗?
求解“孙子问题”的算法有很多,你能想出什么样的算法?
设椭圆的左、右顶点分别为
,点
在椭圆上且异于
两点,
为坐标原点.
(Ⅰ)若直线与
的斜率之积为
,求椭圆的离心率;
(Ⅱ)若,证明直线
的斜率
满足
【解析】(1)解:设点P的坐标为.由题意,有
①
由,得
,
由,可得
,代入①并整理得
由于,故
.于是
,所以椭圆的离心率
(2)证明:(方法一)
依题意,直线OP的方程为,设点P的坐标为
.
由条件得消去
并整理得
②
由,
及
,
得.
整理得.而
,于是
,代入②,
整理得
由,故
,因此
.
所以.
(方法二)
依题意,直线OP的方程为,设点P的坐标为
.
由P在椭圆上,有
因为,
,所以
,即
③
由,
,得
整理得
.
于是,代入③,
整理得
解得,
所以.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com