(三)立体几何初步 1.空间几何体 (1)认识柱.锥.台.球及其简单组合体的结构特征.并能运用这些特征描述现实生活中简单物体的结构. (2)能画出简单空间图形(长方体.球.圆柱.圆锥.棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图. (3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图.了解空间图形的不同表示形式. (4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上.尺寸..线条等不作严格要求) (4)了解球.棱柱.棱锥.台的表面积和体积的计算公式. 2.点.直线.平面之间的位置关系 (1)理解空间直线.平面位置关系的定义.并了解如下可以作为推理依据的公理和定理: 公理1:如果一条直线上的两点在同一个平面内.那么这条直线上的所有点都在此平面内. 公理2:过不在一条直线上的三点.有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点.那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线平行. 定理:空间中如果两个角的两条边分别对应平行.那么这两个角相等或互补. (2)以立体几何的上述定义.公理和定理为出发点.认识和理解空间中线面平行.垂直的有关性质与判定定理. 理解以下判定定理: 定理1.平面外一条直线与此平面内的一条直线平行.则该直线与此平面平行. 定理2.一个平面内的两条相交直线与另一个平面平行.则这两个平面平行. 定理3.一条直线与一个平面内的两条相交直线垂直.则该直线与此平面垂直. 定理4.一个平面过另一个平面的垂线.则两个平面垂直. 理解以下性质定理.并能够证明: 定理1.一条直线与一个平面平行.则过该直线的任一个平面与此平面的交线与该直线平行. 定理2.两个平面平行.则任意一个平面与这两个平面相交所得的交线相互平行. 定理3.垂直于同一个平面的两条直线平行. 定理4.两个平面垂直.则一个平面内垂直于交线的直线与另一个平面垂直. (3)能运用定理.公理和已获得的结论证明一些空间图形的位置关系的简单命题. 查看更多

 

题目列表(包括答案和解析)


同步练习册答案