一个函数是奇(偶)函数.其定义域必关于原点对称.它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称.则函数为非奇非偶函数. . 查看更多

 

题目列表(包括答案和解析)

给定四个命题:
①若f(x)在R上递增,且f(1)f(3)<0,则方程f(x)=0在(1,3)内有唯一的实数根.
②若f(x)在其定义域内可导,且导函数f'(x)是奇函数,则f(x)是偶函数.
③若函数f(x)在[1,4]上连续,则f(x)在[1,4]上必有最大值与最小值.
④若函数y=f(x)的图象既关于点A(1,0)对称,又关于点B(3,0)对称,那么f(x)为周期函数.
其中真命题的序号是
 

查看答案和解析>>

给定四个命题:
①若f(x)在R上递增,且f(1)f(3)<0,则方程f(x)=0在(1,3)内有唯一的实数根.
②若f(x)在其定义域内可导,且导函数f'(x)是奇函数,则f(x)是偶函数.
③若函数f(x)在[1,4]上连续,则f(x)在[1,4]上必有最大值与最小值.
④若函数y=f(x)的图象既关于点A(1,0)对称,又关于点B(3,0)对称,那么f(x)为周期函数.
其中真命题的序号是________.

查看答案和解析>>

下列命题:①已知函数y=f(x)在区间[a,b]上连续,且f(a)f(b)<0,则y=f(x)在[a,b]上零点个数一定为1个;
②定义在R上的奇函数f(x)必满足f(0)=0;
③f(x)=(2x+1)2-2(2x-1)既不是奇函数又不是偶函数;
A=R,B=R,f:x→y=
1
x+1
,则f为A到B的映射;
f(x)=
1
x
在定义域上是减函数.
其中真命题的序号是
 
(把你认为正确的命题的序号都填上).

查看答案和解析>>

下列命题:①已知函数y=f(x)在区间[a,b]上连续,且f(a)f(b)<0,则y=f(x)在[a,b]上零点个数一定为1个;
②定义在R上的奇函数f(x)必满足f(0)=0;
③f(x)=(2x+1)2-2(2x-1)既不是奇函数又不是偶函数;
A=R,B=R,f:x→y=
1
x+1
,则f为A到B的映射;
f(x)=
1
x
在定义域上是减函数.
其中真命题的序号是 ______(把你认为正确的命题的序号都填上).

查看答案和解析>>

下列命题:①已知函数y=f(x)在区间[a,b]上连续,且f(a)f(b)<0,则y=f(x)在[a,b]上零点个数一定为1个;
②定义在R上的奇函数f(x)必满足f(0)=0;
③f(x)=(2x+1)2-2(2x-1)既不是奇函数又不是偶函数;
数学公式,则f为A到B的映射;
数学公式在定义域上是减函数.
其中真命题的序号是 ________(把你认为正确的命题的序号都填上).

查看答案和解析>>


同步练习册答案