设函数 在上为单调增函数.求实数a的取值范围, 的图像上求两点.使以这两点为切点的切线互相垂直.且这两点的横坐标均在区间上 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=-x3+bx(b为常数),若函数f(x)在区间(0,1)上单调递增,且方程f(x)=0的根都在区间[-2,2]内,则b的取值范围是
 

查看答案和解析>>

设函数f(x)=lg(x2+ax-a-1),给出如下命题:
①函数f(x)必有最小值;
②若a=0时,则函数f(x)的值域是R;
③若a>0,且f(x)的定义域为[2,+∞),则函数f(x)有反函数;
④若函数f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是[-4,+∞).
其中正确的命题序号是
 
.(将你认为正确的命题序号都填上)

查看答案和解析>>

设函数f(x)=lg(x2+ax-a-1),给出下述命题:①f(x)有最小值;②当a=0时,f(x)的值域为R;③若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是a≥-4.则其中正确的命题的序号是
 

查看答案和解析>>

设函数f(x)=(x-a)2,g(x)=x,x∈R,a为实常数.
(1)若a>0,设F(x)=
f(x)g(x)
,x≠0,用函数单调性的定义证明:函数F(x)在区间[a,+∞)上是增函数;
(2)设关于x的方程f(x)=|g(x)|在R上恰好有三个不相等的实数解,求a的值所组成的集合.

查看答案和解析>>

设函数f(x)=lg(x2+ax-a-1),给出下述命题:
①函数f(x)的值域为R;
②函数f(x)有最小值;
③当a=0时,函数f(x)为偶函数;
④若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围a≥-4.
正确的命题是(  )
A、①③B、②③C、②④D、③④

查看答案和解析>>


同步练习册答案