抛物线+3与坐标轴的交点共有 个. 查看更多

 

题目列表(包括答案和解析)

抛物线+3与坐标轴的交点共有           个

查看答案和解析>>

已知抛物线y=kx2-2kx+9-k(k为常数,k≠0),且当x>0时,y>1。
(1)求抛物线的顶点坐标;
(2)求k的取值范围;
(3)过动点P(0,n)作直线l⊥y轴,点O为坐标原点。
①当直线l与抛物线只有一个公共点时,求n关于k的函数关系式;
②当直线l与抛物线相交于A、B两点时,是否存在实数n,使得不论k在其取值范围内取任意值时,△AOB的面积为定值?如果存在,求出n的值;如果不存在,说明理由。

查看答案和解析>>

如图1,已知抛物线经过原点O和x轴上另一点D,顶点的坐标为(2,4),Rt△ABC的顶点A与点O重合,AC、AB分别在x轴、y轴上,且AC =3,AB =4。
(1)直线BC的解析式为                
(2)求该抛物线的解析式。
(3)如图2,将Rt△ABC以每秒1个单位长度的速度沿x轴的正方向平行移动,同时一动点P也以相同的速度从点A出发向点B移动,设它们运动的时间为t秒(0≤t≤2),AB边与该抛物线的交点为Q。  
①连接CP、CQ,设△CPQ的面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由。 
②直接写出当直线BC与抛物线有唯一的公共点时t的值。  
 

查看答案和解析>>

如图1,抛物线y=ax2+bx+3经过点A(-3,0),B(-1,0)两点。
(1)求抛物线的解析式;
(2)设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D,现将抛物线平移,保持顶点在直线OD上,若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;
(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E、F两点,问在y轴的负半轴上是否存在一点P,使△PEF的内心在y轴上,若存在,求出点P的坐标;若不存在,说明理由。

查看答案和解析>>

抛物线y=2x2-5x+3的顶点坐标是(    ),与坐标轴的交点共有(    )个。

查看答案和解析>>


同步练习册答案