19.解: (Ⅰ)取AB中点G.连结EG. ∵E为A1B中点. ∵EGA1A. 且EG=a, 又∵D为C1C中点. ∴DCEG. ∴CDEG为平行四边形. ∴DE∥CG.而CG面ABC.DE面ABC. ∴DE∥平面ABC. 4分 (Ⅱ)由已知有CG⊥AB.A1A⊥平面ABC.CG面ABC. ∴A1A⊥CG. ∴CG⊥平面ABA1. 又∵DE∥CG. ∴DE⊥平面ABA1.而且AE面ABA1. ∴DE⊥AE. 又∵AE⊥A1B.而DEA1B. ∴AE⊥平面BDA1.∴AE⊥BD. 8分 (Ⅲ)∵DE⊥平面ABA1.] ∴ 由已知 在正△ABC中.CG=.∴DE=. ∴ 12分 查看更多

 

题目列表(包括答案和解析)

(选修4-1)如图,在△ABC中,∠ABC=90°,以BC为直径的圆O交AC于点D,设E为AB的中点. 
(I)求证:直线DE为圆O的切线;
(Ⅱ)设CE交圆O于点F,求证:CD•CA=CF•CE
(选修4-4)在平面直角坐标系xoy中,圆C的参数方程为
x=4cosθ
y=4sinθ
(θ为参数),直线l经过点p(2,2),倾斜角a=
π
3

(I)写出圆C的标准方程和直线l的参数方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|PA|-|PB|的值.
(选修4-5)已知函数f(x)=|2x+1|,g(x)=|x|+a
(Ⅰ)当a=0时,解不等式f(x)≥g(x);
(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.

查看答案和解析>>

(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)若不等式a≥|x+1|+|x-2|存在实数解,则实数a的取值范围是
 

B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE=
 

精英家教网

C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1
x=3+cos θ
y=4+sin θ
 (θ为参数)和曲线C2:p=1上,则|AB|的最小值为
 

查看答案和解析>>

本题A、B、C三个选答题,请考生任选一题作答,如果多做,则按所做的第一题计分.
A.(不等式选讲选做题)若不等式|x-1|+|x-m|<2m的解集为∅,则m的取值范围为
(-∞,
1
3
]
(-∞,
1
3
]

B.(几何证明选讲选做题)如图所示,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D.过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=
3
2
,则线段CD的长为
4
3
4
3

C.(极坐标系与参数方程选做题)在极坐标系中,ρ(2,
π
3
)的直角坐标是
(1,
3
)
(1,
3
)

查看答案和解析>>

选考题
请从下列三道题当中任选一题作答,如果多做,则按所做的第一题计分,请在答题卷上注明题号.
22-1设函数f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定义域为R,求实数m的取值范围.
22-2如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆交BC于E,AB=2AC,
(1)求证:BE=2AD;
(2)当AC=1,BC=2时,求AD的长.
22-3已知P为半圆C:
x=cosθ
y=sinθ
(θ为参数,0≤θ≤π)
上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与半圆C上的弧AP的长度均为
π
3

(1)求以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;
(2)求直线AM的参数方程.

查看答案和解析>>

请考生从以下三个小题中任选一个作答,若多选,则按所选的第一题计分.
(1)若不等式|x-1|+|x-m|<2m的解集为∅,则m的取值范围为
(0,
1
3
(0,
1
3

(2)直线3x-4y-1=0被曲线
x=2cosθ
y=1+2sinθ
(θ为参数)所截得的弦长为
2
3
2
3

(3)若直角△ABC的内切圆与斜边AB相切于点D,且AD=1,BD=2,则△ABC的面积为
2
2

查看答案和解析>>


同步练习册答案