解:解:(Ⅰ)由题意的:f ?1(x)== f(x)=.所以p = ?1.所以an=----------------------------3分翰林汇 查看更多

 

题目列表(包括答案和解析)

解答题:解答时应写出文字说明、证明过程或演算步骤

已知定义在(-1,1)上的函数f(x)满足,且对x,y∈(-1,1)时,有

(1)

判断f(x)在(-1,1)上的奇偶性,并加以证明;

(2)

,求数列{f(x)}的通项公式;

(3)

设Tn为数列{}的前n项和,问是否存在正整数m,使得对任意的n∈N*,有成立?若存在,求出m的最小值,若不存在,则说明理由.

查看答案和解析>>

解答题:解答应写出文字说明,证明过程或演算步骤.

已知函数f(x)=mx3-3(m+1)x2+3(m+2)x+1,其中m∈R.

(Ⅰ)若m<0,求f(x)的单调区间;

(Ⅱ)在(Ⅰ)的条件下,当x∈[-1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒大于3m,求m的取值范围;

(Ⅲ)设g(x)=mx3-(3m+2)x2+3mx+4lnx+m+1,问是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

设函数f(x)=在[1,+∞上为增函数.  

(1)求正实数a的取值范围;

(2)比较的大小,说明理由;

(3)求证:(n∈N*, n≥2)

【解析】第一问中,利用

解:(1)由已知:,依题意得:≥0对x∈[1,+∞恒成立

∴ax-1≥0对x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

(2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上为增函数,

∴n≥2时:f()=

  

 (3)  ∵   ∴

 

查看答案和解析>>

解析:由题意知

当-2≤x≤1时,f(x)=x-2,

当1<x≤2时,f(x)=x3-2,

又∵f(x)=x-2,f(x)=x3-2在定义域上都为增函数,

f(x)的最大值为f(2)=23-2=6.

答案:C

查看答案和解析>>

设函数f(x)=x2+x.(1)解不等式:f(x)<0;(2)请先阅读下列材料,然后回答问题.
材料:已知函数g(x)=,问函数g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.一个同学给出了如下解答:
解:令u=-f(x)=-x2-x,则u=-(x+2+
当x=-时,u有最大值,umax=,显然u没有最小值,
∴当x=-时,g(x)有最小值4,没有最大值.
请回答:上述解答是否正确?若不正确,请给出正确的解答;
(3)设an=,请提出此问题的一个结论,例如:求通项an.并给出正确解答.
注意:第(3)题中所提问题单独给分,.解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.

查看答案和解析>>


同步练习册答案