题目列表(包括答案和解析)
如图,在直三棱柱中,底面为等腰直角三角形,,为棱上一点,且平面平面.
(Ⅰ)求证:点为棱的中点;
(Ⅱ)判断四棱锥和的体积是否相等,并证明。
【解析】本试题主要考查了立体几何中的体积问题的运用。第一问中,
易知,面。由此知:从而有又点是的中点,所以,所以点为棱的中点.
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D为BB1中点,可以得证。
(1)过点作于点,取的中点,连。面面且相交于,面内的直线,面。……3分
又面面且相交于,且为等腰三角形,易知,面。由此知:,从而有共面,又易知面,故有从而有又点是的中点,所以,所以点为棱的中点. …6分
(2)相等.ABC-A1B1C1为直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D为BB1中点,∴VA1-B1C1CD=VC-A1ABD
如图,三棱柱中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。
(I) 证明:平面⊥平面
(Ⅱ)平面分此棱柱为两部分,求这两部分体积的比.
【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.
【解析】(Ⅰ)由题设知BC⊥,BC⊥AC,,∴面, 又∵面,∴,
由题设知,∴=,即,
又∵, ∴⊥面, ∵面,
∴面⊥面;
(Ⅱ)设棱锥的体积为,=1,由题意得,==,
由三棱柱的体积=1,
∴=1:1, ∴平面分此棱柱为两部分体积之比为1:1
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com