(1)证明:为中点. . 又直三棱柱中:底面底面. .平面. 平面. . 在 矩形中:.. . . .即. .平面,-----------5分 (2)解:平面. =, -------10分 (3)当时.平面. 证明:连.设.连. .为矩形. 为中点.为中点. . 平面.平面. 平面. -------15分 查看更多

 

题目列表(包括答案和解析)

如图,在直三棱柱中,底面为等腰直角三角形,为棱上一点,且平面平面.

(Ⅰ)求证:点为棱的中点;

(Ⅱ)判断四棱锥的体积是否相等,并证明。

【解析】本试题主要考查了立体几何中的体积问题的运用。第一问中,

易知。由此知:从而有又点的中点,所以,所以点为棱的中点.

(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D为BB1中点,可以得证。

(1)过点点,取的中点,连且相交于,面内的直线。……3分

且相交于,且为等腰三角形,易知。由此知:,从而有共面,又易知,故有从而有又点的中点,所以,所以点为棱的中点.               …6分

(2)相等.ABC-A1B1C1为直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,

∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D为BB1中点,∴VA1-B1C1CD=VC-A1ABD

 

查看答案和解析>>

如图,三棱柱中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。

(I) 证明:平面⊥平面

(Ⅱ)平面分此棱柱为两部分,求这两部分体积的比.

【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.

【解析】(Ⅰ)由题设知BC⊥,BC⊥AC,,∴,    又∵,∴,

由题设知,∴=,即,

又∵,   ∴⊥面,    ∵

∴面⊥面

(Ⅱ)设棱锥的体积为=1,由题意得,==

由三棱柱的体积=1,

=1:1,  ∴平面分此棱柱为两部分体积之比为1:1

 

查看答案和解析>>


同步练习册答案