5.若函数在区间上的值域为[-1,3],则满足题意的a,b构成的点(a,b)所在线段的方程是 . 查看更多

 

题目列表(包括答案和解析)

已知函数.(

(1)若在区间上单调递增,求实数的取值范围;

(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.

【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。

解:(1)在区间上单调递增,

在区间上恒成立.  …………3分

,而当时,,故. …………5分

所以.                 …………6分

(2)令,定义域为

在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.   

        …………9分

① 若,令,得极值点

,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;

,即时,同理可知,在区间上递增,

,也不合题意;                     …………11分

② 若,则有,此时在区间上恒有,从而在区间上是减函数;

要使在此区间上恒成立,只须满足

由此求得的范围是.        …………13分

综合①②可知,当时,函数的图象恒在直线下方.

 

查看答案和解析>>

(本小题满分12分)已知函数

(I)若函数在区间上存在极值,求实数a的取值范围;

(II)当时,不等式恒成立,求实数k的取值范围.

(Ⅲ)求证:解:(1),其定义域为,则

时,;当时,

在(0,1)上单调递增,在上单调递减,

即当时,函数取得极大值.                                       (3分)

函数在区间上存在极值,

 ,解得                                            (4分)

(2)不等式,即

(6分)

,则

,即上单调递增,                          (7分)

,从而,故上单调递增,       (7分)

          (8分)

(3)由(2)知,当时,恒成立,即

,则,                               (9分)

                                                                       (10分)

以上各式相加得,

                           

                                        (12分)

 

查看答案和解析>>

下列说法:

①函数的单调增区间是(-∞,1);

②若函数y=f(x)定义域为R且满足f(1-x)=f(x+1),则它的图象关于y轴对称;

③函数的值域为(-1,1);

④函数y=|3-x2|的图象和直线y=a(a∈R)的公共点个数是m,则m的值可能是0,2,3,4;

⑤若函数f(x)=x2-2ax+5(a>1)在x∈[1,3]上有零点,则实数a的取值范围是

其中正确的序号是________.

查看答案和解析>>

已知函数f(x)=x-ln(x+m)在定义域内连续.

(1)求f(x)的单调区间和极值.

(2)当m为何值时,f(x)≥0恒成立?

(3)定理:若函数g(x)在[a,b]上连续,并具有单调性,且满足g(a)与g(b)异号,则方程g(x)=0在[a,b]内有唯一实根.

试用上述定理证明:当m∈N*且m>1时方程f(x)=0在[1-m,em-m]内有唯一实根.(e为自然对数的底)

查看答案和解析>>

(本题满分12分)

对于定义域为D的函数,若同时满足下列条件:①在D内有单调性;②存在区间,使在区间上的值域也为,则称为D上的闭函数。

(1)求闭函数符合条件的区间

(2)判断函数是否为闭函数?并说明理由。

(3)若是闭函数,求实数的取值范围。

查看答案和解析>>


同步练习册答案