题目列表(包括答案和解析)
已知函数.()
(1)若在区间上单调递增,求实数的取值范围;
(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.
【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。
解:(1)在区间上单调递增,
则在区间上恒成立. …………3分
即,而当时,,故. …………5分
所以. …………6分
(2)令,定义域为.
在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.
∵ …………9分
① 若,令,得极值点,,
当,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;
当,即时,同理可知,在区间上递增,
有,也不合题意; …………11分
② 若,则有,此时在区间上恒有,从而在区间上是减函数;
要使在此区间上恒成立,只须满足,
由此求得的范围是. …………13分
综合①②可知,当时,函数的图象恒在直线下方.
(本小题满分12分)已知函数
(I)若函数在区间上存在极值,求实数a的取值范围;
(II)当时,不等式恒成立,求实数k的取值范围.
(Ⅲ)求证:解:(1),其定义域为,则令,
则,
当时,;当时,
在(0,1)上单调递增,在上单调递减,
即当时,函数取得极大值. (3分)
函数在区间上存在极值,
,解得 (4分)
(2)不等式,即
令
(6分)
令,则,
,即在上单调递增, (7分)
,从而,故在上单调递增, (7分)
(8分)
(3)由(2)知,当时,恒成立,即,
令,则, (9分)
(10分)
以上各式相加得,
即,
即
(12分)
。
下列说法:
①函数的单调增区间是(-∞,1);
②若函数y=f(x)定义域为R且满足f(1-x)=f(x+1),则它的图象关于y轴对称;
③函数的值域为(-1,1);
④函数y=|3-x2|的图象和直线y=a(a∈R)的公共点个数是m,则m的值可能是0,2,3,4;
⑤若函数f(x)=x2-2ax+5(a>1)在x∈[1,3]上有零点,则实数a的取值范围是.
其中正确的序号是________.
已知函数f(x)=x-ln(x+m)在定义域内连续.
(1)求f(x)的单调区间和极值.
(2)当m为何值时,f(x)≥0恒成立?
(3)定理:若函数g(x)在[a,b]上连续,并具有单调性,且满足g(a)与g(b)异号,则方程g(x)=0在[a,b]内有唯一实根.
试用上述定理证明:当m∈N*且m>1时方程f(x)=0在[1-m,em-m]内有唯一实根.(e为自然对数的底)
(本题满分12分)
对于定义域为D的函数,若同时满足下列条件:①在D内有单调性;②存在区间,使在区间上的值域也为,则称为D上的闭函数。
(1)求闭函数符合条件的区间;
(2)判断函数是否为闭函数?并说明理由。
(3)若是闭函数,求实数的取值范围。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com