14 查看更多

 

题目列表(包括答案和解析)

14①(供选用《选修1-1》物理课教材的学生做)
2008年9月27日,我国“神舟七号”航天员翟志刚首次实现了中国航天员在太空的舱外活动(如图所示),“神舟七号”载人航天飞行取得了圆满成功,这是我国航天发展史上的又一里程碑.舱外的航天员与舱内的航天员近在咫尺,但要进行对话,一般需要利用(  )

查看答案和解析>>

(14分)一艘帆船在湖面上顺风行驶,在风力的推动下做速度的匀速直线运动。已知:该帆船在匀速行驶的过程中,风突然停止,经过8秒钟帆船能够恰好静止在水面上;该帆船的帆面正对风的有效面积为S=10m,帆船的质量M约为940kg,当时的风速,假设帆船在行驶的过程中受到水的阻力始终恒定不变,风撞击帆面之后相对于船的速度不计,那么由此估算:

   

(1)帆船在匀速行驶时,受到的风的推力和水的阻力分别为多大?

(2)空气的密度约为多少?

查看答案和解析>>

(14分)如图所示的变压器原线圈1接到220 V的交流电源上,副线圈2的匝数为n2=30匝,与一个“12 V、12 W”的灯泡L连接,L能正常发光,副线圈3的输出电压U3=110 V,与电阻R连接,通过R的电流为0.4 A,求:

   

(1)副线圈3的匝数n3

(2)原线圈1的匝数n1和电流I1

查看答案和解析>>

(14分)某实验小组利用实验室提供的器材探究一种金属丝的电阻率。所用的器材包括:输出为3V的直流稳压电源、电流表、待测金属丝、螺旋测微器(千分尺)、米尺、电阻箱、开关和导线等。

(1)他们截取了一段金属丝,拉直后固定在绝缘的米尺上,并在金属丝上夹上一个小金属夹,金属夹,金属夹可在金属丝上移动。请根据现有器材,设计实验电路,并连接电路实物图

                

 

 

(2)实验的主要步骤如下:

①正确连接电路,设定电阻箱的阻值,开启电源,合上开关;

②读出电流表的示数,记录金属夹的位置;

③断开开关,_________________,合上开关,重复②的操作。

(3)该小组测得电流与金属丝接入长度关系的数据,并据此绘出了图的关系图线,其斜率为________A-1?m-1(保留三位有效数字);图线纵轴截距与电源电动势的乘积代表了______的电阻之和。

       (4)他们使用螺旋测微器测量金属丝的直径,示数如图所示。金属丝的直径是______。图中图线的斜率、电源电动势和金属丝横截面积的乘积代表的物理量是________,其数值和单位为___________(保留三位有效数字)。    

查看答案和解析>>

(14分)如图所示,平面直角坐标系xoy内,在x0的区域内分布着匀强电场,其等势线如图中虚线所示(相邻等势面间的距离相等)。在A点源源不断的产生速率为零、质量为m、电荷量为+q的粒子,经电场加速后从O点进入一个圆形的匀强磁场区,其磁感应强度为B,方向垂直纸面向里,其半径为R

,直径OB在x轴上。在x=4R处有一个垂直x轴很大的光屏,与x轴的交点为C,粒子打在光屏上可出现亮点。设粒子的重力不计.A点所在的等势面电势为零,D点的电势为

(1)试证明带电粒子沿半径方向离开磁场;

(2)求从A点产生的粒子经电场和磁场后,打在光屏上的位置。

(3)若将圆形磁场区以O点为轴,整体逆时针将OB缓慢转过90°(与y轴重合),求此过程中粒子打在光屏上的点距C点的最远距离。

查看答案和解析>>

1.(3-4模块) (1)CD  (2)y的负方向(1分)、0.4(1分)、1.9(1分)

(3)解:a.由折射定律:  

在BC界面:sin60°=sinγ  ①(1分)          γ=300°                          

∵sinC=     ②(1分)

∴光线在AC界面发生反射再经AB界面折射 (1分)

sin30°=sinγ/             ③(1分)

γ/=60°  则射出光线与AB面的夹角  β=90°-γ/=30°  ④(1分)            

 

2.(1)v2=0.390m/s(2分) ,a=0.600 m/s2(2分)(说明:取两位有效数字共扣1分)

(2),----1分   ------1分--------1分

 

若F反比于△t-2,则加速度正比于外力。

 

15.(1)30.5-30.9 mA;1.5×103 Ω。×10 ,欧姆调零。

(2)①如图;         (2分)

     ②(A-1)                (2分)

     ③ 0.10-0.14Ω (2分)、9.00-9.60Ω/m(2分)

 

 

3、(16分)(1)(5分)设物块块由D点以初速做平抛,落到P点时其竖直速度为

                 得

       平抛用时为t,水平位移为s,

       在桌面上过B点后初速

       BD间位移为     则BP水平间距为

   (2)(5分)若物块能沿轨道到达M点,其速度为

      

       轨道对物块的压力为FN,则

解得   即物块不能到达M点

   (3)(6分)设弹簧长为AC时的弹性势能为EP,物块与桌面间的动摩擦因数为

       释放      释放

       且

       在桌面上运动过程中克服摩擦力做功为Wf

       则   可得

4.17. (共14分)解:(1)微粒在盒子内、外运动时,盒子的加速度a=μMg/M=μg=0.2×10 m/s2=2 m/s2

盒子全过程做匀减速直线运动,所以通过的总路程是:(4分)

(2)A在盒子内运动时,   方向以向上为正方向

由以上得  a=qE/m=1×10-6×1×103/1×10-5 m/s2=1×102 m/s2 (2分)

A在盒子外运动时,   则a=qE/m=1×102 m/s2  方向向下

A在盒子内运动的时间t1=2v/ a=2×1/1×102s=2×10-2s

同理A在盒子外运动的时间t2=2×10-2s

A从第一次进入盒子到第二次进入盒子的时间t= t1+t2=4×10-2s    (4分)

(3)微粒运动一个周期盒子减少的速度为△v= a (t1+ t2)=2×(0.02+0.02)=0.08m/s

从小球第一次进入盒子到盒子停下,微粒球运动的周期数为n=v1/△v=0.4/0.08=5

故要保证小球始终不与盒子相碰,盒子上的小孔数至少为2n+1个,即11个. (4分)

 

 

5. ⑴1N,向右(提示:注意相当于左右两个边都以v0=10m/s向左切割磁感线,产生的感应电动势相加,左右两边都受到安培力作用,且方向都向右。)⑵8m/s(提示:车运动起来后,当车对地的速度为v时,线框切割磁感线的相对速度变为(v0- v),当安培力与阻力平衡时达到最大速度。);⑶100m(提示:先求出最大共同速度为5m/s,撤去磁场后对A和P整体用动能定理。)

 

 

 

 

6.解:(1)子弹打击滑块,满足动量守恒定律,设子弹射入滑块后滑块的速度为v1,则

          ①     (4分)

(2)从O到A滑块做加速度增大的减速运动,从A到O滑块可能做加速度增大的减速运动,或先做加速度减小的加速运动再做加速度增大的减速运动。

滑块向右到达最右端时,弹簧的弹性势能最大。设在OA段克服摩擦力做的功为Wf,与滑块的动摩擦因数为μ,弹性势能最大值为Ep,根据能量守恒定律:

    ②                       (2分)

由于滑块恰能返回到O点,返回过程中,根据能量守恒定律:

(3)设第二颗子弹射入滑块后滑块的速度为v2,由动量守恒定律得:

     (2分)

如果滑块第一次返回O点时停下,则滑块的运动情况同前,对该过程应用能量守恒定律:

       

①②③④⑤⑥联立解得

如果滑块第三次返回O点时停下,对该过程由能量守恒:

①②③④⑥⑦联立解得

所以,滑块仅两次经过O点,第二颗子弹入射速度的大小范围在

 

 

 

 

 

 


同步练习册答案