若正整数a使得函数的最大值也是整数.则这个最大值等于 4 8 查看更多

 

题目列表(包括答案和解析)

记函数fn(x)=a•xn-1(a∈R,n∈N*)的导函数为
f
n
(x)
,已知
f
3
(2)=12

(Ⅰ)求a的值.
(Ⅱ)设函数gn(x)=fn(x)-n2Inx,试问:是否存在正整数n使得函数gn(x)有且只有一个零点?若存在,请求出所有n的值;若不存在,请说明理由.
(Ⅲ)若实数x0和m(m>0,且m≠1)满足:
f
n
(x0)
f
n+1
(x0)
=
fn(m)
fn+1(m)
,试比较x0与m的大小,并加以证明.

查看答案和解析>>

已知函数f(x)=
1
2
e2x-e(ex+e-x)-x

(1)求函数f(x)的极值.(2)是否存在正整数a,使得方程f(x)=
f(-a)+f(a)
2
在区间[-a,a]上有三个不同的实根,若存在,试确定a的值;若不存在,请说明理由.

查看答案和解析>>

(2012•成都一模)已知函数f(x)在[a,b]上连续,定义
f1(x)=f(t)min,x∈[a,b],a≤t≤x
f2(x)=f(t)max,x∈[a,b],a≤t≤x
;其中f(x)min(x∈D)表示f(x)在D上的最小值,f(x)max(x∈D)表示f(x)在D上的最大值.若存在最小正整数k使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.有下列命题:
①若f(x)=cosx,x∈[0,π],则f1(x)=1,x∈[0,π];
②若f(x)=2x,x∈[-1,4],则f2(x)=2x,x∈[-1,4]
③f(x)=x为[1,2]上的1阶收缩函数;
④f(x)=x2为[1,4]上的5阶收缩函数.
其中你认为正确的所有命题的序号为
②③④
②③④

查看答案和解析>>

设函数f(x)=kax-a-x(a>0且a≠1,k∈R),f(x)是定义域为R上的奇函数.
(1)求k的值,并证明当a>1时,函数f(x)是R上的增函数;
(2)已知f(1)=
3
2
,函数g(x)=a2x+a-2x-4f(x),x∈[1,2],求g(x)的值域;
(3)若a=4,试问是否存在正整数λ,使得f(2x)≥λ•f(x)对x∈[-
1
2
1
2
]
恒成立?若存在,请求出所有的正整数λ;若不存在,请说明理由.

查看答案和解析>>

设向量
=(x , 2)
=(x+n , 2x-1)
(n为正整数),函数y=
在[0,1]上的最小值与最大值的和为an,又数列{bn}满足:nb1+(n-1)b2+…+2bn-1+bn=(
9
10
)n-1+(
9
10
)n-2+…+
9
10
+1

(1)求证:an=n+1(2).
(2)求bn的表达式.
(3)若cn=-an•bn,试问数列{cn}中,是否存在正整数k,使得对于任意的正整数n,都有cn≤ck成立?证明你的结论.(注:
=( a1 ,a2 )
={ a1 ,a2 }
表示意义相同)

查看答案和解析>>


同步练习册答案