题目列表(包括答案和解析)
在数列中,,其中,对任意都有:;(1)求数列的第2项和第3项;
(2)求数列的通项公式,假设,试求数列的前项和;
(3)若对一切恒成立,求的取值范围。
【解析】第一问中利用)同理得到
第二问中,由题意得到:
累加法得到
第三问中,利用恒成立,转化为最小值大于等于即可。得到范围。
(1)同理得到 ……2分
(2)由题意得到:
又
……5分
……8分
(3)
在中,已知,;
(1)求的值;(2)若,求的值;
【解析】第一问中,利用
第二问中即又
再有余弦定理解得。
解:(1) ……4分
(2)即
又 ……8分
又 即
已知数列中,,,数列中,,且点在直线上。
(1)求数列的通项公式;
(2)求数列的前项和;
(3)若,求数列的前项和;
【解析】第一问中利用数列的递推关系式
,因此得到数列的通项公式;
第二问中,在 即为:
即数列是以的等差数列
得到其前n项和。
第三问中, 又
,利用错位相减法得到。
解:(1)
即数列是以为首项,2为公比的等比数列
……4分
(2)在 即为:
即数列是以的等差数列
……8分
(3) 又
① ②
①- ②得到
如图,长方体中,底面是正方形,是的中点,是棱上任意一点。
(Ⅰ)证明: ;
(Ⅱ)如果=2 ,=,, 求 的长。
【解析】(Ⅰ)因底面是正方形,故,又侧棱垂直底面,可得,而,所以面,因,所以面,又面,所以 ;
(Ⅱ)因=2 ,=,,可得,,设,由得,即,解得,即 的长为。
D
解析:当x>0时,,即令,
则函数在区间(0,+∞)上为减函数,又在定义域上是奇函数,
∴函数在定义域上是偶函数,且,则>0在(0,+∞)上的解集是(0,2);
函数是定义域上的奇函数,则>0的解集是(-∞,-2)∪(0,2).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com