解:(1) ∴ ∴.即 () (2).又 ∴.∴. 查看更多

 

题目列表(包括答案和解析)

在数列中,,其中,对任意都有:;(1)求数列的第2项和第3项;

(2)求数列的通项公式,假设,试求数列的前项和

(3)若对一切恒成立,求的取值范围。

【解析】第一问中利用)同理得到

第二问中,由题意得到:

累加法得到

第三问中,利用恒成立,转化为最小值大于等于即可。得到范围。

(1)同理得到             ……2分 

(2)由题意得到:

 又

              ……5分

 ……8分

(3)

 

查看答案和解析>>

中,已知

(1)求的值;(2)若,求的值;

【解析】第一问中,利用

第二问中 

再有余弦定理解得。

解:(1)               ……4分

   (2)

       ……8分

  即 

 

查看答案和解析>>

已知数列中,,数列中,,且点在直线上。

(1)求数列的通项公式;

(2)求数列的前项和

(3)若,求数列的前项和

【解析】第一问中利用数列的递推关系式

,因此得到数列的通项公式;

第二问中, 即为:

即数列是以的等差数列

得到其前n项和。

第三问中, 又   

,利用错位相减法得到。

解:(1)

  即数列是以为首项,2为公比的等比数列

                  ……4分

(2) 即为:

即数列是以的等差数列

         ……8分

(3) 又   

   ①         ②

①-  ②得到

  

 

查看答案和解析>>

如图,长方体中,底面是正方形,的中点,是棱上任意一点。

(Ⅰ)证明: ;

(Ⅱ)如果=2 ,=,, 求 的长。

 【解析】(Ⅰ)因底面是正方形,故,又侧棱垂直底面,可得,而,所以,因,所以,又,所以 ;

(Ⅱ)因=2 ,=,,可得,,设,由,即,解得,即 的长为

 

查看答案和解析>>

D

解析:当x>0时,,即

则函数在区间(0,+∞)上为减函数,又在定义域上是奇函数,

∴函数在定义域上是偶函数,且,则>0在(0,+∞)上的解集是(0,2);

函数是定义域上的奇函数,则>0的解集是(-∞,-2)∪(0,2).

查看答案和解析>>


同步练习册答案