设ABCD是面积为2的长方形.P为边CD上的一点.Q为△PAB的内切圆与边AB的切点.乘积PA·PB的值随着长方形ABCD及点P的变化而变化.当PA·PB取最小值时. (1)证明:AB≥2BC, (2)求AQ·BQ的值. 查看更多

 

题目列表(包括答案和解析)

在边长为2的正方形ABCD边上有点P,沿着折线BCDA由点B(起点)向A(终点)运动(不包括B、A两点),设P运动的路程为x,△PAB的面积为y.
(1)求y关于x的函数关系式y=f(x);
(2)画出函数y=f(x)的图象;
(3)是否存在实数a,使函数y=f(x)的图象关于直线x=a对称?若不存在,则说明理由;若存在,则写出a的值.

查看答案和解析>>

在边长为2的正方形ABCD边上有点P,沿着折线BCDA由点B(起点)向A(终点)运动(不包括B、A两点),设P运动的路程为x,△PAB的面积为y.
(1)求y关于x的函数关系式y=f(x);
(2)画出函数y=f(x)的图象;
(3)是否存在实数a,使函数y=f(x)的图象关于直线x=a对称?若不存在,则说明理由;若存在,则写出a的值.

查看答案和解析>>

在边长为2的正方形ABCD边上有点P,沿着折线BCDA由点B(起点)向A(终点)运动(不包括B、A两点),设P运动的路程为x,△PAB的面积为y.
(1)求y关于x的函数关系式y=f(x);
(2)画出函数y=f(x)的图象;
(3)是否存在实数a,使函数y=f(x)的图象关于直线x=a对称?若不存在,则说明理由;若存在,则写出a的值.

查看答案和解析>>

设F是抛物线G:x2=4y的焦点。
(1)过点P(0,-4)作抛物线G的切线,求切线方程;
(2)设A,B为抛物线G上异于原点的两点,且满足,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值。

查看答案和解析>>

设F是抛物线G:x2=4y的焦点。
(1)过点p(0,-4)作抛物线G的切线,求切线方程;
(2)设A,B为抛物线G上异于原点的两点,且满足=0,延长AF,BF分别交抛物线G于点C,D求四边形ABCD面积的最小值。

查看答案和解析>>


同步练习册答案