题目列表(包括答案和解析)
给出定义:若函数在D上可导,即存在,且导函数在D上也可导,则称ƒ(x)在D上存在二阶导函数,记,若在D上恒成立,则称ƒ(x)在D上为凸函数,以下四个函数在(0,)上不是凸函数的是( )
A. ƒ(x)=sinx+cosx B. ƒ(x)=lnx-2x
C. ƒ(x)= -x3+2x-1 D. ƒ(x)=xex
设函数f(x)=在[1,+∞上为增函数.
(1)求正实数a的取值范围;
(2)比较的大小,说明理由;
(3)求证:(n∈N*, n≥2)
【解析】第一问中,利用
解:(1)由已知:,依题意得:≥0对x∈[1,+∞恒成立
∴ax-1≥0对x∈[1,+∞恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=在[1,+∞)上为增函数,
∴n≥2时:f()=
(3) ∵ ∴
π | 2 |
π |
2 |
A、f(x)=1-sinx |
B、f(x)=ex-2x |
C、f(x)=x3-x2-1 |
D、f(x)=-xe-x |
π | 2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com