题目列表(包括答案和解析)
已知.
(1)求的单调区间;
(2)证明:当时,恒成立;
(3)任取两个不相等的正数,且,若存在使成立,证明:.
【解析】(1)g(x)=lnx+,= (1’)
当k0时,>0,所以函数g(x)的增区间为(0,+),无减区间;
当k>0时,>0,得x>k;<0,得0<x<k∴增区间(k,+)减区间为(0,k)(3’)
(2)设h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 当x变化时,h(x),的变化情况如表
x |
1 |
(1,e) |
e |
(e,+) |
|
- |
0 |
+ |
|
h(x) |
e-2 |
↘ |
0 |
↗ |
所以h(x)0, ∴f(x)2x-e (5’)
设G(x)=lnx-(x1) ==0,当且仅当x=1时,=0所以G(x) 为减函数, 所以G(x) G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,综上,当x1时, 2x-ef(x)恒成立.
(3) ∵=lnx+1∴lnx0+1==∴lnx0=-1 ∴lnx0 –lnx=-1–lnx===(10’) 设H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函数,并且H(t)在t=1处有意义, 所以H(t) <H(1)=0∵∴=
∴lnx0 –lnx>0, ∴x0 >x
3 |
x |
3 |
t |
x |
t |
t |
4x2-12x-3 |
2x+1 |
解::因为,所以f(1)f(2)<0,因此f(x)在区间(1,2)上存在零点,又因为y=与y=-在(0,+)上都是增函数,因此在(0,+)上是增函数,所以零点个数只有一个方法2:把函数的零点个数个数问题转化为判断方程解的个数问题,近而转化成判断与交点个数问题,在坐标系中画出图形
由图看出显然一个交点,因此函数的零点个数只有一个
袋中有50个大小相同的号牌,其中标着0号的有5个,标着n号的有n个(n=1,2,…9),现从袋中任取一球,求所取号码的分布列,以及取得号码为偶数的概率.
已知函数,
(1)设常数,若在区间上是增函数,求的取值范围;
(2)设集合,,若,求的取值范围.
【解析】本试题主要考查了三角函数的性质的运用以及集合关系的运用。
第一问中利用
利用函数的单调性得到,参数的取值范围。
第二问中,由于解得参数m的取值范围。
(1)由已知
又因为常数,若在区间上是增函数故参数
(2)因为集合,,若
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com