(Ⅰ)求证:平面, 查看更多

 

题目列表(包括答案和解析)














(Ⅰ)求证:平面
(Ⅱ)设的中点为,求证:平面
(Ⅲ)求四棱锥的体积.

查看答案和解析>>


(1)求证:平面平面
(2)求正方形的边长;
(3)求二面角的平面角的正切值.

查看答案和解析>>


(1)求证:平面EFG∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1  ;
(3)求异面直线FGB1C所成的角

查看答案和解析>>


(1)求证:平面ACD⊥平面ABC;
(2)求二面角C-AB-D的大小。

查看答案和解析>>

(Ⅰ)如图1,A,B,C是平面内的三个点,且A与B不重合,P是平面内任意一点,若点C在直线AB上,试证明:存在实数λ,使得:
PC
PA
+(1-λ)
PB

(Ⅱ)如图2,设G为△ABC的重心,PQ过G点且与AB、AC(或其延长线)分别交于P,Q点,若
AP
=m
AB
AQ
=n
AC
,试探究:
1
m
+
1
n
的值是否为定值,若为定值,求出这个定值;若不是定值,请说明理由.

查看答案和解析>>

.选择题:

1

2

3

4

5

6

7

8

9

10

11

12

B

D

A

D

C

D

A

C

B

A

C

B

.填空题:

13. 7 ;14.;15. ;16①②③④

三.解答题:

18. 记第一、二、三次射击命中目标分别为事件A,B,C三次均未命中目标的事件为D.依题意. 设在处击中目标的概率为,则,由

,所以, 2分  

5 分

(Ⅰ)由于各次射击都是独立的,所以该射手在三次射击击中目标的概率为

.  8分

 

(Ⅱ)依题意,设射手甲得分为,则

,所以的分布列为

所以。    12分

 

 

 

20. (Ⅰ)证明:连结于点,连结.

在正三棱柱中,四边形是平行四边形,

.

.   ………………………2分

      ∵平面平面

∥平面.       …………………………4分

 

(Ⅱ)过点,过点,连结.

∵平面平面平面,平面平面

      ∴平面.

在平面内的射影.

.

是二面角的平面角.  

在直角三角形中,.

同理可求: .

.

.   …………………………12分

 

21.(Ⅰ),令,解得,1分   

时,为增函数;当为减函数;当为增函数。4分  时,取得极大值为-4,当时,取处极小值为。…………………………6分

(Ⅱ)设上恒成立.

,,若,显然。 8分   若,

,令,解得,或,当时,

,当时,.10分  

 当时,.

,解不等式得,,当时,

满足题意.综上所述的范围为…………...12分

 

 

 


同步练习册答案