18. 查看更多

 

题目列表(包括答案和解析)

(本小题12分)设函数.

(1)求函数的最大值和最小正周期;

设A,B,C为的三个内角,若且C为锐角,求.

查看答案和解析>>

(本小题12分)由于高三学习紧张,所以体育、美术两门课开成选修课,高三(1)班共45名学生,最后统计结坚果显示报体育选修的有33人,报美术选修的有36人.假设每个人体育、美术两门课都可以报,并且有5名学生两门都没有报,随机选取该班的1名学生,计算下列事件的概率;

(Ⅰ)他没报了体育选修课;(Ⅱ)他报了美术选修课但是没有报体育选修课;(Ⅲ)他报了体育和美术两门选修课.

查看答案和解析>>

(本小题12分) 某企业去年的产值是138万元,计划在今后5年内每年比上一年产值增长,这5年的总产是多少?

查看答案和解析>>

(本小题12分) 已知成等比数列,且,求

查看答案和解析>>

19.(本小题12分)设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且与直线x-y+1=0相交的弦长为,求圆的方程.

查看答案和解析>>

.选择题:

1

2

3

4

5

6

7

8

9

10

11

12

B

D

A

D

C

D

A

C

B

A

C

B

.填空题:

13. 7 ;14.;15. ;16①②③④

三.解答题:

18. 记第一、二、三次射击命中目标分别为事件A,B,C三次均未命中目标的事件为D.依题意. 设在处击中目标的概率为,则,由

,所以, 2分  

5 分

(Ⅰ)由于各次射击都是独立的,所以该射手在三次射击击中目标的概率为

.  8分

 

(Ⅱ)依题意,设射手甲得分为,则

,所以的分布列为

所以。    12分

 

 

 

20. (Ⅰ)证明:连结于点,连结.

在正三棱柱中,四边形是平行四边形,

.

.   ………………………2分

      ∵平面平面

∥平面.       …………………………4分

 

(Ⅱ)过点,过点,连结.

∵平面平面平面,平面平面

      ∴平面.

在平面内的射影.

.

是二面角的平面角.  

在直角三角形中,.

同理可求: .

.

.   …………………………12分

 

21.(Ⅰ),令,解得,1分   

时,为增函数;当为减函数;当为增函数。4分  时,取得极大值为-4,当时,取处极小值为。…………………………6分

(Ⅱ)设上恒成立.

,,若,显然。 8分   若,

,令,解得,或,当时,

,当时,.10分  

 当时,.

,解不等式得,,当时,

满足题意.综上所述的范围为…………...12分

 

 

 


同步练习册答案