已知点A是椭圆上一点.F为椭圆的一个焦点.且轴, 查看更多

 

题目列表(包括答案和解析)

已知点A是椭圆上一点,F为椭圆的一个焦点,且AF⊥x轴,|AF|=焦距,则椭圆的离心率是( )
A.
B.
C.
D.

查看答案和解析>>

已知点A是椭圆数学公式上一点,F为椭圆的一个焦点,且AF⊥x轴,|AF|=焦距,则椭圆的离心率是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

已知点A是椭圆
x2
a2
 + 
y2
b2
 = 1 (a>b>0)
上一点,F为椭圆的一个焦点,且AF⊥x轴,|AF|=焦距,则椭圆的离心率是(  )

查看答案和解析>>

已知点A是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上一点,F为椭圆的一个焦点,且AF⊥x轴,|AF|=焦距,则椭圆的离心率是(  )
A.
1+
5
2
B.
3
-1
C.
2
-1
D.
2
-
1
2

查看答案和解析>>

已知点F是椭圆
x2
1+a2
+y2=1(a>0)
右焦点,点M(m,0)、N(0,n)分别是x轴、y轴上的动点,且满足
MN
NF
=0
,若点P满足
OM
=2
ON
+
PO

(1)求P点的轨迹C的方程;
(2)设过点F任作一直线与点P的轨迹C交于A、B两点,直线OA、OB与直线x=-a分别交于点S、T(其中O为坐标原点),试判断
FS
FT
是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

.选择题:

1

2

3

4

5

6

7

8

9

10

11

12

B

B

A

D

C

D

C

C

D

C

C

B

.填空题:

13. 1600 ;14.7;15. 14;16①②③④

 

三.解答题:

17.(本题满分10分)(Ⅰ)

(Ⅱ)

所以的最大值为

18.记小张能过第一关的事件为A,直接去闯第二关能通过的事件为B,直接去闯第三关能通过的事件为C.      2分

 则P(A)=0.8,P(B)=0.75,P(C)=0.5

(Ⅰ)小张在第二关被淘汰的概率为P(A?)=P(A)?(1-P(B))

 =0.8×0.25=0.2. 

 答:小张在第二关被淘汰的概率为0.2      7分

(Ⅱ)小张不能参加决赛的概率为P=1-P(A?B?C)=1-0.8×0.75×0.5=0.7

答:小张不能参加决赛的概率为0.7.    12

19.(Ⅰ)设等差数列的公差为d(d0).

      成等比数列,

   即,化简得,注意到

  6分,

(Ⅱ)=9,

   12分。

 

20.(Ⅰ)证明:连结于点,连结.

在正三棱柱中,四边形是平行四边形,

.

.   ……………………………2分

      ∵平面平面

∥平面.       …………………………4分

 

(Ⅱ)过点,过点,连结.

∵平面平面平面,平面平面

      ∴平面.

在平面内的射影.

.

是二面角的平面角.  

       在直角三角形中,.

同理可求: .

.

.          ……………………12分

21.(Ⅰ),依题意得,即.        2分   ,, ,    5分

(Ⅱ)令.,

,.因此,当时,   8分

要使得不等式对于恒成立,只需.则.故存在最小的正整数,使得不等式

对于恒成立.

\

(Ⅱ)

 

 

 

 


同步练习册答案