题目列表(包括答案和解析)
1 |
4 |
1 |
2 |
(
| ||
(0.1-2)(a3b-3)
|
(14分)设A、B分别为椭圆的左、右顶点,()为椭圆上一点,椭圆的长半轴的长等于焦距.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,若直线AP,BP分别与椭圆相交于异于A、B的点M、N,证明在以MN为直径的圆内.
(14分)已知函数
(Ⅰ)求的值域;
(Ⅱ)设,函数.若对任意,总存在,使,求实数的取值范围.(14分)设A、B分别为椭圆的左、右顶点,()为椭圆上一点,椭圆的长半轴的长等于焦距.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,若直线AP,BP分别与椭圆相交于异于A、B的点M、N,
求证:为钝角.
(14分)已知函数,( x>0).
(I)当0<a<b,且f(a)=f(b)时,求证:ab>1;
(II)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.
(III)若存在实数a,b(a<b),使得函数y=f(x)的定义域为 [a,b]时,值域为 [ma,mb]
(m≠0),求m的取值范围.
一.选择题:
1
2
3
4
5
6
7
8
9
10
11
12
B
B
A
D
C
D
C
C
D
C
C
B
二.填空题:
13. 1600 ;14.7;15. 14;16①②③④
三.解答题:
17.(本题满分10分)(Ⅰ)
(Ⅱ)
所以的最大值为
18.记小张能过第一关的事件为A,直接去闯第二关能通过的事件为B,直接去闯第三关能通过的事件为C. 2分
则P(A)=0.8,P(B)=0.75,P(C)=0.5
(Ⅰ)小张在第二关被淘汰的概率为P(A?)=P(A)?(1-P(B))
=0.8×0.25=0.2.
答:小张在第二关被淘汰的概率为0.2 7分
(Ⅱ)小张不能参加决赛的概率为P=1-P(A?B?C)=1-0.8×0.75×0.5=0.7
答:小张不能参加决赛的概率为
19.(Ⅰ)设等差数列的公差为d(d0).
成等比数列,
即,化简得,注意到,,
6分,
(Ⅱ)=9,,。。
12分。
20.(Ⅰ)证明:连结交于点,连结.
在正三棱柱中,四边形是平行四边形,
∴.
∵,
∴∥. ……………………………2分
∵平面,平面,
∴∥平面. …………………………4分
(Ⅱ)过点作交于,过点作交于,连结.
∵平面平面,平面,平面平面,
∴平面.
∴是在平面内的射影.
∴.
∴是二面角的平面角.
在直角三角形中,.
同理可求: .
∴.
∵,
∴. ……………………12分
21.(Ⅰ),依题意得,即,. 2分 ,, , 5分
(Ⅱ)令得.,
,.因此,当时, 8分
要使得不等式对于恒成立,只需.则.故存在最小的正整数,使得不等式
对于恒成立.
\
(Ⅱ)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com