如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量m=0.04kg、电量q=+2×10
-4c的可视为质点的带电小球与弹簧接触但不栓接.某一瞬间释放弹簧弹出小球,小球从水平台右端A点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B点,并沿轨道滑下.已知AB的竖直高度h=0.45m,倾斜轨道与水平方向夹角为α=37°、倾斜轨道长为L=2.0m,带电小球与倾斜轨道的动摩擦因数μ=0.5.倾斜轨道通过光滑水平轨道CD与光滑竖直圆轨道相连,在C点没有能量损失,所有轨道都绝缘,运动过程小球的电量保持不变.只有过山车模型的竖直圆轨道处在范围足够大竖直向下的匀强电场中,场强E=2.0×10
3V/m.(cos37°=0.8,sin37°=0.6,取g=10m/s
2)求:
(1)被释放前弹簧的弹性势能?
(2)要使小球不离开轨道(水平轨道足够长),竖直圆弧轨道的半径应该满足什么条件?
(3)如果竖直圆弧轨道的半径R=0.9m,小球进入轨道后可以有多少次通过竖直圆轨道上距水平轨道高为0.01m的某一点P?