已知椭圆上存在一点到椭圆左焦点的距离与到椭圆右准线的距离相等. (1)求椭圆的离心率的取值范围, (2)若以椭圆的两个焦点和短轴的两个端点为顶点的四边形是一个面积为2的正方形.求椭圆的方程; 的条件下.记椭圆的上顶点为.直线交椭圆于两点.问:是否存在直线.使椭圆右焦点恰为的垂心?若存在.求出直线的方程;若不存在.请说明理由. 曾都一中2009-2010学年高二上学期期末考试文科数学试题参考答案 选择题答题栏 查看更多

 

题目列表(包括答案和解析)

 (本小题满分14分)

已知椭圆的中心是坐标原点,焦点在x轴上,离心率为,又椭圆上任一点到两焦点的距离和为,过点M(0,)与x轴不垂直的直线交椭圆于P、Q两点.

(1)求椭圆的方程;

(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.

 

查看答案和解析>>

(本小题满分14分)

已知椭圆E的两个焦点分别为F1(-1,0), F2 (1,0), 点(1, )在椭圆E上.

(1)求椭圆E的方程

(2)若椭圆E上存在一点 P, 使∠F1PF2=30°, 求△PF1F2的面积.

 

查看答案和解析>>

(本小题满分14分)
已知椭圆的中心是坐标原点,焦点在x轴上,离心率为,又椭圆上任一点到两焦点的距离和为,过点M(0,)与x轴不垂直的直线交椭圆于P、Q两点.
(1)求椭圆的方程;
(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)
已知椭圆的中心是坐标原点,焦点在x轴上,离心率为,又椭圆上任一点到两焦点的距离和为,过点M(0,)与x轴不垂直的直线交椭圆于P、Q两点.
(1)求椭圆的方程;
(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

已知抛物线、椭圆、双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点。

(Ⅰ)求这三条曲线方程;

(Ⅱ)若定点P(3,0),A为抛物线上任意一点,是否存在垂直于x轴的直线l被以AP为直径的圆截得的弦长为定值?若存在,求出l的方程;若不存在,说明理由。

查看答案和解析>>


同步练习册答案