平面向量 (1)平面向量的实际背景及基本概念 ① 了解向量的实际背景. ② 理解平面向量的概念.理解两个向量相等的含义. ③ 理解向量的几何表示. (2)向量的线性运算 ① 掌握向量加法.减法的运算.并理解其几何意义. ② 掌握向量数乘的运算及其意义.理解两个向量共线的含义. ③ 了解向量线性运算的性质及其几何意义. (3)平面向量的基本定理及坐标表示 ① 了解平面向量的基本定理及其意义. ② 掌握平面向量的正交分解及其坐标表示. ③ 会用坐标表示平面向量的加法.减法与数乘运算. ④ 理解用坐标表示的平面向量共线的条件. (4)平面向量的数量积 ① 理解平面向量数量积的含义及其物理意义. ② 了解平面向量的数量积与向量投影的关系. ③ 掌握数量积的坐标表达式.会进行平面向量数量积的运算. ④ 能运用数量积表示两个向量的夹角.会用数量积判断两个平面向量的垂直关系. (5)向量的应用 ① 会用向量方法解决某些简单的平面几何问题. ② 会用向量方法解决某些简单的力学问题及其他一些实际问题. 查看更多

 

题目列表(包括答案和解析)

设平面向量
a
b
满足|
a
|=|
b
|=1,
a
b
=0
x
=
a
+(t2-k)
b
y
=-s
a
+t
b
,其中,k,t,s∈R.
(1)若
x
y
,求函数关系式s=f(t);
(2)在(1)的条件下,若k=3,t∈[-2,3],求s的最大值;
(3)实数k在什么范围内取值时?对该范围内的每一个确定的k值,存在唯一的实数t,使
x
y
=2-s

查看答案和解析>>

下列命题中,正确的是
①③
①③

(1)平面向量
a
b
的夹角为60°,
a
=(2,0)
|
b
|=1
,则|
a
+
b
|
=
7

(2)若x≠0,则x+
1
x
≥2

(3)若命题p:“?x∈R,x2-x-1>0”,则命题p的否定为“?x∈R,x2-x-1≤0
(4)“a=1是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件.

查看答案和解析>>

已知对任意平面向量
AB
=(x,y),我们把
AB
绕其起点A沿逆时针方向旋转θ角得到向量
AP
=(xcosθ-ysinθ,xsinθ+ycosθ),称为
AB
逆旋θ角到
AP

(1)把向量
a
=(2,-1)逆旋
π
3
角到
b
,试求向量
b

(2)设平面内函数y=f (x)图象上的每一点M,把
OM
逆旋
π
4
角到
ON
后(O为坐标原点),得到的N点的轨迹是曲线x2-y2=3,当函数F (x)=λ f (x)-|x-1|+2有三个不同的零点时,求实数λ的取值范围.

查看答案和解析>>

我们学过平面向量(二维向量)),空间向量(三位向量),二维、三维向量的坐标表示及其运算可以推广到n(n≥3)维向量.n维向量可用 (x1,x2,x3,x4,…,xn)表示.设
a
=(a1,a2,a3,a4,…,an),设
b
=(b1,b2,b3,b4,…,bn),a与b夹角θ的余弦值为cosθ=
a1b1+a2b2+…+anbn
a
2
1
+
a
2
2
+…+
a
2
n
b
2
1
+
b
2
2
+…+
b
2
n
.当两个n维向量,
a
=(1,1,1,…,1),
b
=(-1,-1,1,1,…,1)时,cosθ=(  )
A、
n-1
n
B、
n-2
n
C、
n-3
n
D、
n-4
n

查看答案和解析>>

出于应用方便和数学交流的需要,我们教材定义向量的坐标如下:取
e1
e2
为直角坐标第xOy中与x轴和y轴正方向相同的单位向量,根据平面向量基本定理,对于该平面上的任意一个向量
a
,则存在唯一的一对实数λ,μ,使得
a
=λ
e1
e2
,我们就把实数对(λ,μ)称作向量
a
的坐标.并依据这样的定义研究了向量加法、减法、数乘向量及数量积的坐标运算公式.现在我们用
i
j
表示斜坐标系x‘Oy’中与x‘轴和y轴正方向相同的单位向量,其中<
i
j
>=
π
3

(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
i
j
做基底向量定义斜坐标系x‘Oy’平面上的任意一个向量
a
的坐标;
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式.

查看答案和解析>>


同步练习册答案