22.不等式的基本性质和证明的基本方法 (1)理解绝对值的几何意义.并能利用含绝对值不等式的几何意义证明以下不等式: ① ② . (2)会利用绝对值的几何意义求解以下类型的不等式: (3)了解证明不等式的基本方法:比较法.综合法.分析法.反证法.放缩法. Ⅲ.考试形式与试卷结构 考试形式:采用闭卷.笔试形式.考试限定用时为120分钟. 试卷结构:试卷包括第Ⅰ卷和第Ⅱ卷.试卷满分为150分.第Ⅰ卷为单项选择题.共12题.60分.第Ⅱ卷为填空题和解答题.共16分.填空题只要求直接填写结果.不必写出计算过程或推证过程.解答题包括计算题.证明题和应用题等, 共6题, 74分.解答应写出文字说明.演算步骤或推证过程..考试不允许使用计算器. Ⅳ.题型示例 略 查看更多

 

题目列表(包括答案和解析)

已知离心率为的椭圆C1的顶点A1,A2恰好是双曲线的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>

已知离心率为的椭圆C1的顶点A1,A2恰好是双曲线的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>

已知离心率为的椭圆C1的顶点A1,A2恰好是双曲线的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>

已知离心率为
3
2
的椭圆C1的顶点A1,A2恰好是双曲线
x2
3
-y2=1
的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当k1=
1
2
时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为
4
5
5
,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>

已知离心率为
3
2
的椭圆C1的顶点A1,A2恰好是双曲线
x2
3
-y2=1
的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当k1=
1
2
时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为
4
5
5
,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>


同步练习册答案