解.原式= 由,知, ∴原式= 查看更多

 

题目列表(包括答案和解析)

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1
x2
a2
+
y2
b2
=1
以抛物线y2=4
3
x
的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线x2=
1
mn
y
异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=xk+b(常数k,b∈R)的图象过点(4,2)、(16,4)两点.
(1)求f(x)的解析式;
(2)若函数g(x)的图象与函数f(x)的图象关于直线y=x对称,若不等式g(x)+g(x-2)>2ax+2恒成立,求实数a的取值范围;
(3)若P1,P2,P3,…,Pn,…是函数f(x)图象上的点列,Q1,Q2,Q3,…,Qn,…是x正半轴上的点列,O为坐标原点,△OQ1P1,△Q1Q2P2,…,△Qn-1QnPn,…是一系列正三角形,记它们的边长是a1,a2,a3,…,an,…,探求数列an的通项公式,并说明理由.

查看答案和解析>>

已知M、N两点的坐标分别是是常数,令是坐标原点

(Ⅰ)求函数的解析式,并求函数上的单调递增区间;

(Ⅱ)当时,的最大值为,求a的值,并说明此时的图象可由函数的图象经过怎样的平移和伸缩变换而得到?

查看答案和解析>>

已知函数f(x)=xk+b(常数k,b∈R)的图象过点(4,2)、(16,4)两点.
(1)求f(x)的解析式;
(2)若函数g(x)的图象与函数f(x)的图象关于直线y=x对称,若不等式g(x)+g(x-2)>2ax+2恒成立,求实数a的取值范围;
(3)若P1,P2,P3,…,Pn,…是函数f(x)图象上的点列,Q1,Q2,Q3,…,Qn,…是x正半轴上的点列,O为坐标原点,△OQ1P1,△Q1Q2P2,…,△Qn-1QnPn,…是一系列正三角形,记它们的边长是a1,a2,a3,…,an,…,探求数列an的通项公式,并说明理由.

查看答案和解析>>

已知函数f(x)=xk+b(常数k,b∈R)的图象过点(4,2)、(16,4)两点.
(1)求f(x)的解析式;
(2)若函数g(x)的图象与函数f(x)的图象关于直线y=x对称,若不等式g(x)+g(x-2)>2ax+2恒成立,求实数a的取值范围;
(3)若P1,P2,P3,…,Pn,…是函数f(x)图象上的点列,Q1,Q2,Q3,…,Qn,…是x正半轴上的点列,O为坐标原点,△OQ1P1,△Q1Q2P2,…,△Qn-1QnPn,…是一系列正三角形,记它们的边长是a1,a2,a3,…,an,…,探求数列an的通项公式,并说明理由.

查看答案和解析>>


同步练习册答案