23.某兴趣小组为了测量一待测电阻Rx的阻值.首先用多用电表粗测出它的阻值.然后再用伏安法更精确地测量.实验室里准备了以下器材: A.多用电表 B.电压表V1.量程2V.内阻约4 C.电压表V2.量程15V.内阻约20k D.电流表A1.量程0.6A.内阻r1约l E.电流表A2.量程1.2mA.内阻k=50 F.滑动变阻器R3..最大阻值5 G.滑动变阻器R2.最大阻值50 H电阻箱R..阻值(0-9999. 9) 另有:电源.导线.电键若干 (l)①在用多用电表粗测电阻时.该兴趣小组首先选用“xl0 欧姆挡.其阻值如图甲中指针所示.为了减小多用电表的读数误差.多用电表的选择开关应换用 欧姆挡, ②按正确的操作程序再一次用多用电表测量该待测电阻的阻值时.其阻值如图乙中指针所示.则Rx的阻值大约是 , (2)①在用伏安法测量该电阻的阻值时.要求待测电阻的电压从零开始可以连续调节.测量时两电表指针偏转均超过其量程的一半.则在上述器材中.除了电源.导线.电键外还应选用的器材是 , ②在虚线框内画出用伏安法测量该电阻阻值时的实验电路图. ③若选测量数据中的一组来计算Rx.则Rx= .表达式中各个符号物理的意义是: 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日    期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

昼夜温差x(°C)

10

11

13

12

8

6

就诊人数y(个)

22

25

29

26

16

12

    该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

    (Ⅰ)求选取的2组数据恰好是相邻两个月的概率;(5分)

    (Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;(6分)

    (Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(3分)

    (参考公式: )

查看答案和解析>>

(本小题满分12分)

某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日    期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

昼夜温差

10

11

13

12

8

6

就诊人数

22

25

29

26

16

12

该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

⑴ 求选取的2组数据恰好是相邻两个月的概率;

⑵ 若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程

⑶ 若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

 

查看答案和解析>>

(本小题满分12分)

某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日    期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

昼夜温差

10

11

13

12

8

6

就诊人数

22

25

29

26

16

12

该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

⑴ 求选取的2组数据恰好是相邻两个月的概率;

⑵ 若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程

⑶ 若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性www..com回归方程是否理想?

查看答案和解析>>

(本小题满分12分)

某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局和某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

昼夜温差

10

11

13

12

8

6

就诊人数

22

25

29

26

16

12

该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验;

(1)求选取的2组数据恰好是相邻两个月的概率;

(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

(参考公式:

查看答案和解析>>

某校高三(1)班共有40名学生,他们每天自主学习的时间全部在180分钟到330分钟之间,按他们学习时间的长短分5个组统计得到如下频率分布表:
分组 频数 频率
[180,210) 4 0.1
[210,240) 8 s
[240,270) 12 0.3
[270,300) 10 0.25
[300,330) n t
 (1)求分布表中s,t的值;
(2)某兴趣小组为研究每天自主学习的时间与学习成绩的相关性,需要在这40名学生中按时间用分层抽样的方法抽取20名学生进行研究,问应抽取多少名第一组的学生?
(3)已知第一组的学生中男、女生均为2人.在(2)的条件下抽取第一组的学生,求既有男生又有女生被抽中的概率.

查看答案和解析>>


同步练习册答案