3..所以选. 查看更多

 

题目列表(包括答案和解析)

精英家教网选做题(请考生在以下三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(选修4-4坐标系与参数方程)将参数方程
x=e2+e-2
y=2(e2-e-2)
(e为参数)化为普通方程是
 

B.(选修4-5 不等式选讲)不等式|x-1|+|2x+3|>5的解集是
 

C.(选修4-1 几何证明选讲)如图,在△ABC中,AD是高线,CE是中线,|DC|=|BE|,DG⊥CE于G,且|EC|=8,则|EG|=
 

查看答案和解析>>

选做题(请考生在以下三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(1)(不等式选讲)已知函数f(x)=log2(|x-1|+|x-5|-a),当函数f(x)的定义域为R时,则实数a的取值范围为
(-∞,4)
(-∞,4)

(2)(几何证明选讲)如图,AB是半圆O的直径,点C在半圆上,CD⊥AB,垂足为D,且AD=5DB,设∠COD=θ,则tanθ的值为
5
2
5
2


(3)(坐标系与参数方程)圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ,则经过两圆圆心的直线的直角坐标方程为
y=x+2
y=x+2

查看答案和解析>>

选考题
请从下列三道题当中任选一题作答,如果多做,则按所做的第一题计分,请在答题卷上注明题号.
22-1设函数f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定义域为R,求实数m的取值范围.
22-2如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆交BC于E,AB=2AC,
(1)求证:BE=2AD;
(2)当AC=1,BC=2时,求AD的长.
22-3已知P为半圆C:
x=cosθ
y=sinθ
(θ为参数,0≤θ≤π)
上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与半圆C上的弧AP的长度均为
π
3

(1)求以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;
(2)求直线AM的参数方程.

查看答案和解析>>

选做题:请考生从22、23、24题中任选一题作答,并在答题卡上把所选题目的题号用2B铅笔涂黑.注意所做题目的题号必须与所涂的题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分.
如图,已知C、F是以AB为直径的半圆O上的两点,且CF=CB,过C作CD⊥AF交AF的延长线与点D.
(1)证明:CD为圆O的切线;
(2)若AD=3,AB=4,求AC的长.

查看答案和解析>>

以下茎叶图记录了甲、乙两组各四名同学的年龄,乙组记录中有一个数据模糊,无法确认,在图中以X表示.
甲组 乙组
9 9 0 X 8 9
1 1 1 0
(1)若这8名同学的平均年龄是9.5岁,求X;
(2)在(1)的条件下,先后从甲、乙两组中各随机选取一名同学,列出所有的基本事件,并计算这两名同学的平均年龄是9.5岁的概率.

查看答案和解析>>


同步练习册答案