22.解:(1) 令得 又 ------4分 (2)在有两个不相等的实根. 即 得 所以 ------8分 (3)由① ①当.在左右两边异号 是的唯一的一个驻点 由题意知 即 即 存在这样的满足题意 符合题意 ------10分 ②当时.即 这时函数唯一的一个驻点为 由题意 即 即 ------------14分 综合①②知:满足题意 的范围为. -----------15分 查看更多

 

题目列表(包括答案和解析)

(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)

在平行四边形中,已知过点的直线与线段分别相交于点。若

(1)求证:的关系为

(2)设,定义函数,点列在函数的图像上,且数列是以首项为1,公比为的等比数列,为原点,令,是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由。

(3)设函数上偶函数,当,又函数图象关于直线对称, 当方程上有两个不同的实数解时,求实数的取值范围。

查看答案和解析>>

(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)

在平行四边形中,已知过点的直线与线段分别相交于点。若

(1)求证:的关系为

(2)设,定义函数,点列在函数的图像上,且数列是以首项为1,公比为的等比数列,为原点,令,是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由。

(3)设函数上偶函数,当,又函数图象关于直线对称, 当方程上有两个不同的实数解时,求实数的取值范围。

 

查看答案和解析>>

(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
在平行四边形中,已知过点的直线与线段分别相交于点。若
(1)求证:的关系为
(2)设,定义函数,点列在函数的图像上,且数列是以首项为1,公比为的等比数列,为原点,令,是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由。
(3)设函数上偶函数,当,又函数图象关于直线对称,当方程上有两个不同的实数解时,求实数的取值范围。

查看答案和解析>>

(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
在平行四边形中,已知过点的直线与线段分别相交于点。若
(1)求证:的关系为
(2)设,定义函数,点列在函数的图像上,且数列是以首项为1,公比为的等比数列,为原点,令,是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由。
(3)设函数上偶函数,当,又函数图象关于直线对称,当方程上有两个不同的实数解时,求实数的取值范围。

查看答案和解析>>


同步练习册答案