题目列表(包括答案和解析)
本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)
已知以原点为中心的椭圆的一条准线方程为,离心率,是椭圆上的动点.
(Ⅰ)若的坐标分别是,求的最大值;
(Ⅱ)如题(20)图,点的坐标为,是圆上的点,是点在轴上的射影,点满足条件:,.求线段的中点的轨迹方程;
(本小题满分12分)
有一幅椭圆型彗星轨道图,长4cm,高,如下图,
已知O为椭圆中心,A1,A2是长轴两端点,
|
(Ⅰ)建立适当的坐标系,写出椭圆方程,
并求出当彗星运行到太阳正上方时二者在图上的距离;
(Ⅱ)直线l垂直于A1A2的延长线于D点,|OD|=4,
设P是l上异于D点的任意一点,直线A1P,A2P分别
交椭圆于M、N(不同于A1,A2)两点,问点A2能否
在以MN为直径的圆上?试说明理由.
(本小题满分12分)已知中心在原点的椭圆的离心率,一条准线方程为
(1)求椭圆的标准方程;
(2)若以>0)为斜率的直线与椭圆相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围。
(本小题满分12分)己知、、是椭圆:()上的三点,其中点的坐标为,过椭圆的中心,且,。
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线(斜率存在时)与椭圆交于两点,,设为椭圆与 轴负半轴的交点,且,求实数的取值范围.
(本小题满分12分) 已知椭圆的离心率,A,B
分别为椭圆的长轴和短轴的端点,为AB的中点,O为坐标原点,且.
(1)求椭圆的方程;
(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com