设集合W由满足下列两个条件的数列构成: ①,②存在实数M.使. (Ⅰ)在只有5项的有限数列. 中.其中=3..,,试判断数列.是否为集合W中的元素, (Ⅱ)设是各项为正数的等比数列.是其前项和...试证明.并写出的取值范围, (Ⅲ)设数列.对于满足条件的M的最小值M0,都有(). 求证:数列单调递增. 查看更多

 

题目列表(包括答案和解析)

设集合W由满足下列两个条件的数列构成:

②存在实数M,使(n为正整数)

   (I)在只有5项的有限数列

        ;试判断数列是否为集合W的元素;

   (II)设是各项为正的等比数列,是其前n项和,证明数列;并写出M的取值范围;

  (III)设数列且对满足条件的M的最小值M0,都有.

        求证:数列单调递增.

查看答案和解析>>

(14分)设集合W由满足下列两个条件的数列构成:

②存在实数M,使(n为正整数)
(I)在只有5项的有限数列
;试判断数列是否为集合W的元素;
(II)设是各项为正的等比数列,是其前n项和,证明数列;并写出M的取值范围;
(III)设数列且对满足条件的M的最小值M0,都有.
求证:数列单调递增.

查看答案和解析>>

(14分)设集合W由满足下列两个条件的数列构成:

②存在实数M,使(n为正整数)
(I)在只有5项的有限数列
;试判断数列是否为集合W的元素;
(II)设是各项为正的等比数列,是其前n项和,证明数列;并写出M的取值范围;
(III)设数列且对满足条件的M的最小值M0,都有.
求证:数列单调递增.

查看答案和解析>>

(14分)

设集合W由满足下列两个条件的数列构成:

②存在实数M,使(n为正整数)

   (I)在只有5项的有限数列

        ;试判断数列是否为集合W的元素;

   (II)设是各项为正的等比数列,是其前n项和,证明数列;并写出M的取值范围;

  (III)设数列且对满足条件的M的最小值M0,都有.

        求证:数列单调递增.

查看答案和解析>>

(14分)

设集合W由满足下列两个条件的数列构成:

②存在实数M,使(n为正整数)

   (I)在只有5项的有限数列

        ;试判断数列是否为集合W的元素;

   (II)设是各项为正的等比数列,是其前n项和,证明数列;并写出M的取值范围;

  (III)设数列且对满足条件的M的最小值M0,都有.

        求证:数列单调递增.

查看答案和解析>>


同步练习册答案