27.X.Y.Z为不同短周期非金属元素的气态单质.在一定条件下能发生如下反应:Y+X 甲.甲.乙可化合生成离子化合物.甲的相对分子质量小于乙. (1)X的结构式是 . (2)磷在Z气体中燃烧可生成液态丙分子.也可生成固态丁分子.已知丙分子中各原子最外层均是8电子结构.丙的电子式是 .磷单质和Z单质反应生成1 mol丙时.反应过程与能量变化如图Ⅰ所示.该反应的热化学方程式是 . (3)某同学拟用图Ⅱ所示装置证明氧化性Z>I2.已知高锰酸钾与乙的浓溶液反应生成Z.则a是 的水溶液.若仅将a换为甲的浓溶液.实验时会产生大量白烟并有气体单质生成.该反应的化学方程式是 . (4)向一定浓度的BaCl2溶液中通入SO2气体.未见沉淀生成.若在通入SO2气体的同时加入由X. Y. Z| 中的一种或几种元素组成的某纯净物.即可生成白色沉淀. 该纯净物可能是 . . 查看更多

 

题目列表(包括答案和解析)

本题有(1)、(2)、(3)三个选择题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1).选修4-2:矩阵与变换
已知矩阵A=
1a
-1b
,A的一个特征值λ=2,其对应的特征向量是α1=
2
1

(Ⅰ)求矩阵A;
(Ⅱ)若向量β=
7
4
,计算A2β的值.

(2).选修4-4:坐标系与参数方程
已知椭圆C的极坐标方程为ρ2=
12
3cos2θ+4sin2θ
,点F1,F2为其左、右焦点,直线l的参数方程为
x=2+
2
2
t
y=
2
2
t
(t为参数,t∈R).求点F1,F2到直线l的距离之和.
(3).选修4-5:不等式选讲
已知x,y,z均为正数.求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

某班全部t名学生在一次百米测试中,成绩全部介于13秒和18秒之间.将测试结果按如下方式分为五组:第一组[13,14);第二组[14,15);…;第五组[17,18],下表是按上述分组方式得到的频率分布表.
分 组 频数 频率
[13,14) x 0.04
[14,15) 9 y
[15,16) z 0.38
[16,17) 16 0.32
[17,18] 4 0.08
(Ⅰ)求t及上表中的x,y,z的值;
(Ⅱ)设m,n是从第一组或第五组中任意抽取的两名学生的百米测试成绩,求事件“|m-n|>1”的概率.

查看答案和解析>>

甲有一只放有x个红球,y个白球,z个黄球的箱子,箱内共有6个球,且每种颜色的球至少有一个;乙有一只放有3个红球,2个白球,1个黄球的箱子.两人各自从自己的箱子中任取一球,规定:当两球同色时为甲胜,两球异色时为乙胜.
(1)当x=1,且甲胜的概率为
14
时,求y与z;
(2)当x=2,y=3,z=1时,规定甲取红,白,黄而胜的得分分别为1分,2分,3分,负则得0分,记甲得分为随机变量ξ,求ξ的分布列及期望.

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
12
34

①求矩阵A的逆矩阵B;
②若直线l经过矩阵B变换后的方程为y=x,求直线l的方程.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为
x=1+2cosα
y=-1+2sinα
(a为参数),点Q极坐标为(2,
7
4
π).
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
(I)关于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范围.
(II)设x,y,z∈R,且
x2
16
+
y2
5
+
z2
4
=1
,求x+y+z的取值范围.

查看答案和解析>>

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>


同步练习册答案