如图.在四面体ABCD中.O.E分别是BD.BC的中点.CA=CB=CD=BD=2.AB=AD= (1)求证:AO平面BCD, (2)求异面直线AB与CD所成角的余弦值, (3)求点E到平面ACD的距离. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)

如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,

(Ⅰ)求证:FH∥平面EDB;

(Ⅱ)求证:AC⊥平面EDB;

(Ⅲ)求四面体B—DEF的体积;

查看答案和解析>>

(本小题满分13分)

如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,

(Ⅰ)求证:FH∥平面EDB;

(Ⅱ)求证:AC⊥平面EDB;

(Ⅲ)求四面体B—DEF的体积;

查看答案和解析>>

(本小题满分13分)已知正四棱锥P—ABCD的高为,底面边长为,其内接正四棱柱EFGH—E1F1G1H1的四个顶点E、F、G、H在底面上,另外四个顶点E1、F1、G1、H1分别在棱PA、PB、PC、PD上(如图所示),设正四棱柱的底面边长为

    (Ⅰ)设内接正四棱柱的体积为,求出函数的解析式;

     (Ⅱ)试求该内接正四棱柱的最大体积及对应的的值.

查看答案和解析>>

(本小题满分13分)已知正四棱锥P—ABCD的高为,底面边长为,其内接正四棱柱EFGH—E1F1G1H1的四个顶点E、F、G、H在底面上,另外四个顶点E1、F1、G1、H1分别在棱PA、PB、PC、PD上(如图所示),设正四棱柱的底面边长为

(Ⅰ)设内接正四棱柱的体积为,求出函数的解析式;
(Ⅱ)试求该内接正四棱柱的最大体积及对应的的值.

查看答案和解析>>


同步练习册答案