21. 设函数 (1)若函数在内没有极值点.求的取值范围. (2)若对任意的.不等式上恒成立.求实数的取值范围. 查看更多

 

题目列表(包括答案和解析)

( (本小题满分12分)

设函数

(Ⅰ)求函数的单调递增区间;

(Ⅱ)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.

 

查看答案和解析>>

(本小题满分12分)

已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用(若天购买一次,需要支付天的保管费)。其标准如下: 7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.

(1)当9天购买一次配料时,求该厂用于配料的保管费用是多少元?[

(2)设该厂天购买一次配料,求该厂在这天中用于配料的总费用(元)关于的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?

 

查看答案和解析>>

(本小题满分12分)已知函数f(x)=x3x2-2.

(1)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点(anan+12-2an+1)(n∈N*)在函数yf′(x)的图象上,求证:点(nSn)也在yf′(x)的图象上;

(2)求函数f(x)在区间(a-1,a)内的极值.

 

 

查看答案和解析>>

(本小题满分12分)

已知函数f(x)=4x3-3x2sin+的极小值大于零,其中x∈R, ∈[0,].

(1).求的取值范围.

(2).若在的取值范围内的任意,函数f(x)在区间(2a-1,a)内都是增函数,求实数a的取值范围.

(3).设x0>,f(x0) >,若f[f(x0)]=x0,求证f(x0)=x0

 

查看答案和解析>>

(本小题满分12分)
已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用(若天购买一次,需要支付天的保管费)。其标准如下: 7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.
(1)当9天购买一次配料时,求该厂用于配料的保管费用是多少元?[
(2)设该厂天购买一次配料,求该厂在这天中用于配料的总费用(元)关于的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?

查看答案和解析>>


同步练习册答案