题目列表(包括答案和解析)
1 |
2 |
1 |
3 |
1 |
n |
1 |
2 |
1 |
3 |
1 |
n |
a |
a-1 |
2Sn |
an |
1 |
1+an |
1 |
1-an+1 |
1 |
3 |
某校从参加高三年级理科综合物理考试的学生中随机抽出名学生,将其数学成绩(均为整数)分成六段,…后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的
平均分;
(Ⅲ)若从名学生中随机抽取人,抽到的学生成绩在记分,在记分,
在记分,用表示抽取结束后的总记分,求的分布列和数学期望.
【解析】(1)中利用直方图中面积和为1,可以求解得到分数在内的频率为
(2)中结合平均值可以得到平均分为:
(3)中用表示抽取结束后的总记分x, 学生成绩在的有人,在的有人,在的有人,结合古典概型的概率公式求解得到。
(Ⅰ)设分数在内的频率为,根据频率分布直方图,则有,可得,所以频率分布直方图如右图.……4分
(求解频率3分,画图1分)
(Ⅱ)平均分为:……7分
(Ⅲ)学生成绩在的有人,在的有人,
在的有人.并且的可能取值是. ………8分
则;; ;
;.(每个1分)
所以的分布列为
0 |
1 |
2 |
3 |
4 |
|
…………………13分
(2012年高考湖南卷理科21)(本小题满分13分)
在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.
(Ⅰ)求曲线C1的方程;
(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com