设常数.展开式中的系数为.则= . (14)在中..M为BC的中点.则 .(用表示) (15)函数对于任意实数满足条件.若则 . (16)平行四边形的一个顶点A在平面内.其余顶点在的同侧. 已知其中有两个顶点到的距离分别为1和2 .那么剩下的一个顶 点到平面的距离可能是: ①1, ②2, ③3, ④4, 以上结论正确的为 .(写出所有正确结论的编号) 查看更多

 

题目列表(包括答案和解析)

(理科做)设f(n)=1+
1
2
+
1
3
+…+
1
n
,用数学归纳法证明:当n≥2,n∈N*时,n+f(1)+f(2)+…+f(n-1)=nf(n).

查看答案和解析>>

(理科做)设f(n)=1+
1
2
+
1
3
+…+
1
n
,用数学归纳法证明:当n≥2,n∈N*时,n+f(1)+f(2)+…+f(n-1)=nf(n).

查看答案和解析>>

(理科)已知数列{an}的前n项和Sn满足Sn=
a
a-1
(an-1)(a为常数且a≠0,a≠1,n∈N*)

(1)求数列{an}的通项公式;
(2)记bn=
2Sn
an
+1
,若数列{bn}为等比数列,求a的值;
(3)在满足(2)的条件下,记Cn=
1
1+an
+
1
1-an+1
,设数列{Cn}的前n项和为Tn,求证:Tn>2n-
1
3

查看答案和解析>>

某校从参加高三年级理科综合物理考试的学生中随机抽出名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:

(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;

(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的

平均分;

(Ⅲ)若从名学生中随机抽取人,抽到的学生成绩在分,在分,

分,用表示抽取结束后的总记分,求的分布列和数学期望.

【解析】(1)中利用直方图中面积和为1,可以求解得到分数在内的频率为

(2)中结合平均值可以得到平均分为:

(3)中用表示抽取结束后的总记分x, 学生成绩在的有人,在的有人,在的有人,结合古典概型的概率公式求解得到。

(Ⅰ)设分数在内的频率为,根据频率分布直方图,则有,可得,所以频率分布直方图如右图.……4分

(求解频率3分,画图1分)

(Ⅱ)平均分为:……7分

(Ⅲ)学生成绩在的有人,在的有人,

的有人.并且的可能取值是.    ………8分

.(每个1分)

所以的分布列为

0

1

2

3

4

…………………13分

 

查看答案和解析>>

 (2012年高考湖南卷理科21)(本小题满分13分)

在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.

(Ⅰ)求曲线C1的方程;

(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.

查看答案和解析>>


同步练习册答案