题目列表(包括答案和解析)
(本小题满分12分)已知数列{an}的前n项和为Sn, 且满足条件:4S n =+ 4n – 1 , nÎN*.
(1) 证明:(a n– 2)2 –=0 (n ³ 2);(2) 满足条件的数列不惟一,试至少求出数列{an}的的3个不同的通项公式 .
(本小题满分12分高☆考♂资♀源?网)
已知等差数列{an}的首项,前n项和为Sn,且S4+a2=2S3;等比数列{bn}满足b1=a2,b2=a4
(1)若a1=2,设,求数列{cn}的前n项的和Tn;
(2)在(1)的条件下,若有的最大值.
(本小题满分12分)
已知数列{an}的前n项和为Sn, Sn+1="4an+2," a1="1," bn=an+1-2an(n∈N*)
(1) 求数列{bn}的前n项和Tn.
(2)求 an
(本小题满分12分)已知等差数列{an}的前n项和为Sn,且a3=5,S15="225."
(Ⅰ)求数列{an}的通项an;
(Ⅱ)设bn=+2n,求数列{bn}的前n项和Tn.
(本小题满分12分)
已知Sn为数列{an}的前n项和,a1=9,Sn=n2an-n2(n-1),设bn=
(1)求证:bn-bn-1="n" (n≥2,n∈N).
(2)求的最小值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com