12.已知函数f(x)是定义在R上的不恒为0的函数.且对于任意实数a.b满足f=2, =, = . 考察下列结论:①f为奇函数,③数列{}为等差数列,④数列{}为等比数列.其中正确的个数为 A.1 B.2 C.3 D.4 第Ⅱ卷 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)是定义在R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f()的值是

A.0      B.      C.1      D.

 

查看答案和解析>>

已知函数f(x)是定义在R上不恒为零的函数,且对于任意实数a,b∈R,满足:
(ab)= a(b)+b(a), (2)="2," an=(n∈N*), bn=(n∈N*).
考察下列结论: ①(0)= (1); ②(x)为偶函数; ③数列{an}为等比数列; ④数列{bn}为等差数列.其中正确的结论共有(  )

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

已知函数f(x)是定义在R上不恒为零的函数,且对于任意实数a,bR,满足:f(a·b)=af(b)+bf(a),f(2)=2,an=(nN*),bn=(nN*).

考察下列结论:

f(0)=f(1);f(x)为偶函数;

③数列{an}为等比数列;

④数列{bn}为等差数列.

其中正确的结论共有(  )

(A)1(B)2(C)3(D)4

 

查看答案和解析>>

已知函数f(x)是定义在R上不恒为零的函数,且对于任意实数a,b∈R,满足:
(ab)= a(b)+b(a), (2)="2," an=(n∈N*), bn=(n∈N*).
考察下列结论: ①(0)= (1); ②(x)为偶函数; ③数列{an}为等比数列; ④数列{bn}为等差数列.其中正确的结论共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

已知函数f(x)是定义在R上不恒为零的函数,且对于任意实数a,b∈R,满足:f(a·b)=af(b)+bf(a),f(2)=2,an=(n∈N*),bn=(n∈N*).
考察下列结论:
①f(0)=f(1);②f(x)为偶函数;
③数列{an}为等比数列;
④数列{bn}为等差数列.
其中正确的结论共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>


同步练习册答案