(二)为偶数.则为奇数.则..则.解得:(是正偶数). ---- (B)为偶数 查看更多

 

题目列表(包括答案和解析)

(08年大连市一模理) 若在二项式的展开式中任取一项,该项的系数为奇数的概率是1,则在二项式的展开式中任取一项,该项的系数为奇数的概率是p,为偶数的概率是q,那么p―q=         

查看答案和解析>>

已知二次函数f(x)=ax2+bx+1和函数
(1)若f(x)为偶函数,试判断g(x)的奇偶性;
(2)若方程g(x)=x有两个不等的实根x1,x2(x1<x2),则
①函数f(x)在(-1,1)上是单调函数吗?说明理由;
②若方程f(x)=0的两实根为x3,x4(x3<x4),求使x3<x1<x2<x4成立的a的取值范围。

查看答案和解析>>

有如下算法:第一步,输入不小于2的正整数n
第二步,判断n是否为2,若n=2,则n满足条件;若n>2,则执行第三步
第三步,依次从2到n-1检验能不能整除n,若不能整除,则n满足条件。
则上述算法满足条件的n是
[     ]
A.质数
B.奇数
C.偶数
D.约数

查看答案和解析>>

(08年岳阳一中二模理)(12分)  一个盒子中装有6张卡片,上面分别写着如下6个定义域均为R的函数:

.

(1)现从盒子中任取两张卡片,将卡片上的函数相加得到一个新函数,求所得函数

为奇函数的概率;

(2)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行。求抽取次数的分布列和数学期望.

查看答案和解析>>

已知是公差为d的等差数列,是公比为q的等比数列

(Ⅰ)若 ,是否存在,有?请说明理由;

(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;

(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.

【解析】第一问中,由,整理后,可得为整数不存在,使等式成立。

(2)中当时,则

,其中是大于等于的整数

反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)中设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

结合二项式定理得到结论。

解(1)由,整理后,可得为整数不存在,使等式成立。

(2)当时,则,其中是大于等于的整数反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

   由,得

为奇数时,此时,一定有使上式一定成立。为奇数时,命题都成立

 

查看答案和解析>>


同步练习册答案