10.(理)如图.在中...则过点C. 以A.H为两焦点的双曲线的离心率为 A.2 B.3 C. D. (文)已知二次曲线.离心率.则实数取值范围为 A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

如图,在直角梯形ABCD中,AD⊥AB,BC⊥AB,AD=3,AB=4,BC=
3
,点E在线段AB的延长线上.曲线段DE上任一点到A、B两点的距离之和都相等.
(1)建立适当的直角坐标系,求曲线段DE的方程;
(2)试问:过点C能否作一条直线l与曲线段DE相交于两点M、N,使得线段MN以C为中点?若能,则求直线l的方程;
若不能,则说明理由.

查看答案和解析>>

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

已知椭圆.
(1)我们知道圆具有性质:若为圆O:的弦AB的中点,则直线AB的斜率与直线OE的斜率的乘积为定值。类比圆的这个性质,写出椭圆的类似性质,并加以证明;
(2)如图(1),点B为在第一象限中的任意一点,过B作的切线分别与x轴和y轴的正半轴交于C,D两点,求三角形OCD面积的最小值;
(3)如图(2),过椭圆上任意一点的两条切线PM和PN,切点分别为M,N.当点P在椭圆上运动时,是否存在定圆恒与直线MN相切?若存在,求出圆的方程;若不存在,请说明理由.
    
图(1)                                    图(2)

查看答案和解析>>

(2012•湖南模拟)选做题(请考生在第16题的三个小题中任选两题作答,如果全做,则按前两题记分,要写出必要的推理与演算过程)
(1)如图,已知Rt△ABC的两条直角边BC,AC的长分别为3cm,4cm,以AC为直径作圆与斜边AB交于点D,试求BD的长.
(2)已知曲线C的参数方程为
x=1+cosθ
y=sinθ
(θ为参数),求曲线C上的点到直线x-y+1=0的距离的最大值.
(3)若a,b是正常数,a≠b,x,y∈(0,+∞),则
a2
x
+
b2
y
(a+b)2
x+y
,当且仅当
a
x
=
b
y
时上式取等号.请利用以上结论,求函数f(x)=
2
x
+
9
1-2x
(x∈0,
1
2
)的最小值.

查看答案和解析>>

选做题(请考生在第16题的三个小题中任选两题作答,如果全做,则按前两题记分,要写出必要的推理与演算过程)
(1)如图,已知Rt△ABC的两条直角边BC,AC的长分别为3cm,4cm,以AC为直径作圆与斜边AB交于点D,试求BD的长.
(2)已知曲线C的参数方程为数学公式(θ为参数),求曲线C上的点到直线x-y+1=0的距离的最大值.
(3)若a,b是正常数,a≠b,x,y∈(0,+∞),则数学公式+数学公式数学公式,当且仅当数学公式=数学公式时上式取等号.请利用以上结论,求函数f(x)=数学公式+数学公式(x∈0,数学公式)的最小值.

查看答案和解析>>


同步练习册答案